Shock Response of an Antenna Structure Considering Geometric Nonlinearity

2016-01-28
Antenna structures used in electronic warfare, radar, naval, satellite, spacecraft systems encounter mechanical shock from various sources such as near miss under water explosion, pyrotechnic and ballistic shocks. Since most of the antenna structure has larger dimension in longitudinal direction and experience high frequency, high amplitude shock energy, geometric nonlinearity become crucial to predict dynamic behavior in real life. In this study, the antenna structure is modeled by Euler-Bernoulli beam theory including geometrical nonlinearity. The resulting partial differential equations of motion are converted into a set of nonlinear ordinary differential equations by using Galerkin's Method, which are solved by Newmark. The results for the linear system obtained from time integration and approximate methods such as Absolute Method, Naval Research Method, and Shock Response Spectrum Method (SRS) are compared to the nonlinear ones. Moreover, these results are compared with the ones obtained from commercial Finite Element software.

Suggestions

Modeling and experimental verification of dynamic characteristics antenna structure under mechanical shock using MDOF model
Özçelik, Yunus Emre; Ciğeroğlu, Ender; Çalışkan, Mehmet; Department of Mechanical Engineering (2015)
Antenna structures used in electronic warfare, radar, naval, satellite, spacecraft systems encounter mechanical shock from various sources such as near miss under water explosion, pyrotechnic and ballistic shocks. Since most antenna structures have larger dimension in longitudinal direction and experience high requency, high amplitude shock energy, geometric nonlinearity becomes crucial to predict dynamic behavior in real life. In this thesis, an antenna structure is modeled by Euler-Bernoulli beam theory i...
Shock analysis of an antenna structure subjected to underwater explosions
Demir, Mehmet Emre; Çalışkan, Mehmet; Department of Mechanical Engineering (2015)
Antenna structures constitute main parts of electronic warfare systems. Mechanical design is as crucial as electromagnetic design of antenna structures for proper functioning and meeting high system performance needs. Failure of mechanical and electronic structures operating under shock loading is a common occurrence in naval electronic warfare applications. A complete shock analysis of the dipole antenna structure subjected to underwater explosions is performed to foresee adverse effects of mechanical shoc...
Comparison of Outer Rotor Radial Flux and Axial Flux PM Motors for CMG Application
Ertan, Hulusi Bülent (2014-09-05)
Control moment gyroscopes (CMG) are used in modern satellite applications for attitude control of satellites. The volume and mass of the instruments is very important in such applications. In this context, integrating the mass of the CMG, on the stator of the motor, promises to save space and mass. Radial-flux outer-rotor motor is a promising configuration in that respect. In this paper, using such a PM motor is considered for control moment gyroscope applications. The design of the motor must be made such ...
Shock failure analysis of metallic structures by using strain energy density method
Çelik, Mehmet; Mercimek, Ümit; Kadıoğlu, Fevzi Suat (2014-01-01)
Failure of metallic structures operating under shock loading is a common occurrence in engineering applications. It is difficult to estimate the response of complicated systems analytically, due to structure's dynamic characteristics and varying loadings. Therefore, experimental, numerical, or a combination of both methods is used for evaluations. In this study, test pieces made of two different materials are subjected to shock loads stemming from firing of a Gatling gun. Strain measurements are made, and f...
Design, simulation, and fabrication of cubesat antenna systems
Dolapçı, Türker; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2020-9)
This study aims to design, simulate, and fabricate on-board and ground station antenna systems for CubeSats, i.e., the most affordable space missions. An on-board UHF turnstile antenna system is optimized in simulation evironment in accordance with different pattern requirements, by changing the orientation of the antenna arms. In order to feed the turnstile antenna arms by successive 90◦ phase differences between them, a four-way quadrature splitter circuit is designed and fabricated. Antenna pattern m...
Citation Formats
Y. E. Ozcelik, E. Ciğeroğlu, and M. Çalışkan, “Shock Response of an Antenna Structure Considering Geometric Nonlinearity,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33245.