Model based dynamics analysis in live cell microtubule images.

2007-07-10
Altinok, A
Kiriş, Erkan
Peck, AJ
Feinstein, SC
Wilson, L
Manjunath, BS
Rose, K
Background: The dynamic growing and shortening behaviors of microtubules are central to the fundamental roles played by microtubules in essentially all eukaryotic cells. Traditionally, microtubule behavior is quantified by manually tracking individual microtubules in time-lapse images under various experimental conditions. Manual analysis is laborious, approximate, and often offers limited analytical capability in extracting potentially valuable information from the data. Results: In this work, we present computer vision and machine-learning based methods for extracting novel dynamics information from time-lapse images. Using actual microtubule data, we estimate statistical models of microtubule behavior that are highly effective in identifying common and distinct characteristics of microtubule dynamic behavior. Conclusion: Computational methods provide powerful analytical capabilities in addition to traditional analysis methods for studying microtubule dynamic behavior. Novel capabilities, such as building and querying microtubule image databases, are introduced to quantify and analyze microtubule dynamic behavior.
BMC cell biology

Suggestions

Modeling of various biological networks via LCMARS
AYYILDIZ DEMİRCİ, EZGİ; Purutçuoğlu Gazi, Vilda (Elsevier BV, 2018-09-01)
In system biology, the interactions between components such as genes, proteins, can be represented by a network. To understand the molecular mechanism of complex biological systems, construction of their networks plays a crucial role. However, estimation of these biological networks is a challenging problem because of their high dimensional and sparse structures. Several statistical methods are proposed to overcome this issue. The Conic Multivariate Adaptive Regression Splines (CMARS) is one of the recent n...
A novel model-based method for feature extraction from protein sequences for classification
Sarac, Omer Sinan; Atalay, Mehmet Volkan; Atalay, Rengül (2006-01-01)
Representation of amino-acid sequences constitutes the key point in classification of proteins into functional or structural classes. The representation should contain the biologically meaningful information hidden in the primary sequence of the protein. Conserved or similar subsequences are strong indicators of functional and structural similarity. In this study we present a feature mapping that takes into account the models of the subsequences of protein sequences. An expectation-maximization algorithm al...
Inference of large-scale networks via statistical approaches
Ayyıldız Demirci, Ezgi; Purutçuoğlu Gazi, Vilda; Department of Statistics (2019)
In system biology, the interactions between components such as genes, proteins, can be represented by a network. To understand the molecular mechanism of complex biological systems, construction of their networks plays a crucial role. However, estimation of these networks is a challenging problem because of their high dimensional and sparse structures. The Gaussian graphical model (GGM) is widely used approach to construct the undirected networks. GGM define the interactions between species by using the con...
Modeling and simulation of metabolic networks for estimation of biomass accumulation parameters
Kaplan, U.; TÜRKAY, METİN; Biegler, L.; Karasözen, Bülent (2009-05-28)
Metabolic networks are defined as the collection of biochemical reactions within a cell that define the functions of that cell. Due to the growing need to understand the functions of biological organisms for industrial and medical purposes, modeling and simulation of metabolic networks has attracted a lot of attention recently. Traditionally, metabolic networks are modeled such as flux-balance analysis that considers the steady state nature of the cell. However, it is important to consider the dynamic behav...
Parallelization of functional flow to predict protein functions
Akkoyun, Emrah; Can, Tolga; Department of Medical Informatics (2011)
Protein-protein interaction networks provide important information about what the biological function of proteins whose roles are unknown might be in a cell. These interaction networks were analyzed by a variety of approaches by running them on a single computer and the roles of the proteins identified were used to predict the function of the proteins unidentified. The functional flow is an approach that takes the network connectivity, distance effect, topology of the network with local and global views int...
Citation Formats
A. Altinok et al., “Model based dynamics analysis in live cell microtubule images.,” BMC cell biology, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33356.