Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Explicit maximal and minimal curves over finite fields of odd characteristics
Download
index.pdf
Date
2016-11-01
Author
Özbudak, Ferruh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
183
views
76
downloads
Cite This
In this work we present explicit classes of maximal and minimal Artin-Schreier type curves over finite fields having odd characteristics. Our results include the proof of Conjecture 5.9 given in [1] as a very special subcase. We use some techniques developed in [2], which were not used in [1].
Subject Keywords
Algebraic curves
,
Rational points
,
Maximal curves
,
Minimal curves
URI
https://hdl.handle.net/11511/33387
Journal
FINITE FIELDS AND THEIR APPLICATIONS
DOI
https://doi.org/10.1016/j.ffa.2016.07.006
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Knotting of algebraic curves in CP2
Finashin, Sergey (2002-01-01)
For any k⩾3, I construct infinitely many pairwise smoothly non-isotopic smooth surfaces homeomorphic to a non-singular algebraic curve of degree 2k, realizing the same homology class as such a curve and having abelian fundamental group ⧹ . This gives an answer to Problem 4.110 in the Kirby list (Kirby, Problems in low-dimensional topology, in: W. Kazez (Ed.), Geometric Topology, AMS/IP Stud. Adv. Math. vol 2.2, Amer. Math. Soc., Providence, 1997).
L-Polynomials of the Curve
Özbudak, Ferruh (2014-09-28)
Let chi be a smooth, geometrically irreducible and projective curve over a finite field F-q of odd characteristic. The L-polynomial L-chi(t) of chi determines the number of rational points of chi not only over F-q but also over F-qs for any integer s >= 1. In this paper we determine L-polynomials of a class of such curves over F-q.
Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places
ÇAKÇAK, Emrah; Özbudak, Ferruh (2007-07-01)
We give existence and characterization results for some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places simultaneously.
On Fibre Products of Kummer Curves with Many Rational Points over Finite Fields
Özbudak, Ferruh; YAYLA, OĞUZ (2014-09-18)
We determined the number of rational points of fibre products of two Kummer covers over a rational point of the projective line in a recent work of F. Ozbudak and B. G. Temur (Des Codes Cryptogr 70(3): 385-404, 2014), where we also constructed explicit examples, including a record and two new entries for the current Table of Curves with Many Points (manYPoints: Table of curves with many points. http://www.manypoints.org (2014). Accessed 30 Sep 2014). Using the methods given in Ozbudak and Gulmez Temur (Des ...
Algebraic Nahm transform for parabolic Higgs bundles on P-1
Aker, Kursat; Szabo, Szilard (2014-01-01)
We formulate the Nahm transform in the context of parabolic Higgs bundles on P-1 and extend its scope in completely algebraic terms. This transform requires parabolic Higgs bundles to satisfy an admissibility condition and allows Higgs fields to have poles of arbitrary order and arbitrary behavior. Our methods are constructive in nature and examples are provided. The extended Nahm transform is established as an algebraic duality between moduli spaces of parabolic Higgs bundles. The guiding principle behind ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Özbudak, “Explicit maximal and minimal curves over finite fields of odd characteristics,”
FINITE FIELDS AND THEIR APPLICATIONS
, pp. 81–92, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33387.