Explicit maximal and minimal curves over finite fields of odd characteristics

In this work we present explicit classes of maximal and minimal Artin-Schreier type curves over finite fields having odd characteristics. Our results include the proof of Conjecture 5.9 given in [1] as a very special subcase. We use some techniques developed in [2], which were not used in [1].


Knotting of algebraic curves in CP2
Finashin, Sergey (2002-01-01)
For any k⩾3, I construct infinitely many pairwise smoothly non-isotopic smooth surfaces homeomorphic to a non-singular algebraic curve of degree 2k, realizing the same homology class as such a curve and having abelian fundamental group ⧹ . This gives an answer to Problem 4.110 in the Kirby list (Kirby, Problems in low-dimensional topology, in: W. Kazez (Ed.), Geometric Topology, AMS/IP Stud. Adv. Math. vol 2.2, Amer. Math. Soc., Providence, 1997).
On Fibre Products of Kummer Curves with Many Rational Points over Finite Fields
Özbudak, Ferruh; YAYLA, OĞUZ (2014-09-18)
We determined the number of rational points of fibre products of two Kummer covers over a rational point of the projective line in a recent work of F. Ozbudak and B. G. Temur (Des Codes Cryptogr 70(3): 385-404, 2014), where we also constructed explicit examples, including a record and two new entries for the current Table of Curves with Many Points (manYPoints: Table of curves with many points. http://www.manypoints.org (2014). Accessed 30 Sep 2014). Using the methods given in Ozbudak and Gulmez Temur (Des ...
Algebraic Nahm transform for parabolic Higgs bundles on P-1
Aker, Kursat; Szabo, Szilard (2014-01-01)
We formulate the Nahm transform in the context of parabolic Higgs bundles on P-1 and extend its scope in completely algebraic terms. This transform requires parabolic Higgs bundles to satisfy an admissibility condition and allows Higgs fields to have poles of arbitrary order and arbitrary behavior. Our methods are constructive in nature and examples are provided. The extended Nahm transform is established as an algebraic duality between moduli spaces of parabolic Higgs bundles. The guiding principle behind ...
Quadratic forms of codimension 2 over certain finite fields of even characteristic
Özbudak, Ferruh; Saygi, Zulfukar (2011-12-01)
Let F-q be a finite field of characteristic 2, not containing F-4. Let k >= 2 be an even integer. We give a full classification of quadratic forms over F-q(k) of codimension 2 provided that certain three coefficients are from F-4. We apply this to the classification of maximal and minimal curves over finite fields.
On maximal curves and linearized permutation polynomials over finite fields
Özbudak, Ferruh (Elsevier BV, 2001-08-08)
The purpose of this paper is to construct maximal curves over large finite fields using linearized permutation polynomials. We also study linearized permutation polynomials under finite field extensions.
Citation Formats
F. Özbudak, “Explicit maximal and minimal curves over finite fields of odd characteristics,” FINITE FIELDS AND THEIR APPLICATIONS, pp. 81–92, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33387.