Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places
Date
2007-07-01
Author
ÇAKÇAK, Emrah
Özbudak, Ferruh
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
212
views
0
downloads
Cite This
We give existence and characterization results for some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places simultaneously.
Subject Keywords
Curves
,
Points
,
Codes
URI
https://hdl.handle.net/11511/34375
Journal
JOURNAL OF PURE AND APPLIED ALGEBRA
DOI
https://doi.org/10.1016/j.jpaa.2006.08.007
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Explicit maximal and minimal curves over finite fields of odd characteristics
Özbudak, Ferruh (2016-11-01)
In this work we present explicit classes of maximal and minimal Artin-Schreier type curves over finite fields having odd characteristics. Our results include the proof of Conjecture 5.9 given in [1] as a very special subcase. We use some techniques developed in [2], which were not used in [1].
Finite number of fibre products of Kummer covers and curves with many points over finite fields
Özbudak, Ferruh (2014-03-01)
We study fibre products of a finite number of Kummer covers of the projective line over finite fields. We determine the number of rational points of the fibre product over a rational point of the projective line, which improves the results of Ozbudak and Temur (Appl Algebra Eng Commun Comput 18:433-443, 2007) substantially. We also construct explicit examples of fibre products of Kummer covers with many rational points, including a record and two new entries for the current table (http://www.manypoints.org,...
On Fibre Products of Kummer Curves with Many Rational Points over Finite Fields
Özbudak, Ferruh; YAYLA, OĞUZ (2014-09-18)
We determined the number of rational points of fibre products of two Kummer covers over a rational point of the projective line in a recent work of F. Ozbudak and B. G. Temur (Des Codes Cryptogr 70(3): 385-404, 2014), where we also constructed explicit examples, including a record and two new entries for the current Table of Curves with Many Points (manYPoints: Table of curves with many points. http://www.manypoints.org (2014). Accessed 30 Sep 2014). Using the methods given in Ozbudak and Gulmez Temur (Des ...
Algebraic Nahm transform for parabolic Higgs bundles on P-1
Aker, Kursat; Szabo, Szilard (2014-01-01)
We formulate the Nahm transform in the context of parabolic Higgs bundles on P-1 and extend its scope in completely algebraic terms. This transform requires parabolic Higgs bundles to satisfy an admissibility condition and allows Higgs fields to have poles of arbitrary order and arbitrary behavior. Our methods are constructive in nature and examples are provided. The extended Nahm transform is established as an algebraic duality between moduli spaces of parabolic Higgs bundles. The guiding principle behind ...
On bounded and unbounded operators
Uyanık, Elif; Yurdakul, Murat Hayrettin; Department of Mathematics (2017)
In this thesis we study on bounded and unbounded operators and obtain some results by considering $ell$-K"{o}the spaces. As a beginning, we introduce some necessary and sufficient conditions for a Cauchy Product map on a smooth sequence space to be continuous and linear and we consider its transpose. We use the modified version of Zahariuta's method to obtain analogous results for isomorphic classification of Cartesian products of K"{o}the spaces. We also investigate the SCBS property and show that all sepa...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. ÇAKÇAK and F. Özbudak, “Some Artin-Schreier type function fields over finite fields with prescribed genus and number of rational places,”
JOURNAL OF PURE AND APPLIED ALGEBRA
, pp. 113–135, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34375.