Simplified model for computer-aided analysis of integral bridges

2000-08-01
This paper presents a computer-aided approach for the design of integral-abutment bridges. An analysis procedure and a simplified structure model are proposed for the design of integral-abutment bridges considering their actual behavior and load distribution among their various components. A computer program, for the analysis of integral-abutment bridges, has been developed using the proposed analysis procedure and structure model. The program is capable of analyzing an integral-abutment bridge for each construction stage and carrying the effects of applied loads on the structure members from a previous construction stage to the next. The proposed analysis methods and structure models are compared with the conventional analysis method and structure model currently used by many structural engineers for the design of integral-abutment bridges. The benefits of using the proposed analysis method and simplified structure model for the design of integral-abutment bridges are discussed. It was concluded that it may be possible to obtain more sound and economical designs for integral-abutment bridges using the proposed analysis method and structure model.
Journal of Bridge Engineering

Suggestions

Nonlinear analysis of R/C low-rise shear walls
Mansour, Mohamad Y.; Dicleli, Murat; Lee, Jung Yoon (SAGE Publications, 2004-08-01)
An analysis method for predicting the response of low-rise shear walls under both monotonic and cyclic loading is presented in this paper. The proposed analysis method is based on the softened truss model theory but utilizes newly proposed cyclic constitutive relationships for concrete and steel bars obtained from cyclic shear testing. The successfulness of the analysis method, when combined with new materials constitutive relationships, is checked against the test results of 33 low-rise shear walls reporte...
Numerical integration of a class of 3d plastic-damage concrete models and condensation of 3d stress-strain relations for use in beam finite elements
Sarıtaş, Afşin (Elsevier BV, 2009-10-01)
This paper presents a method for the integration of a class of plastic-damage material models. The integration of the evolution equations results in a nonlinear problem, which is linearized and solved with the Newton-Raphson method using a sub-stepping strategy. The consistent tangent matrix can be formulated either in terms of the stress components in a general reference system or in terms of the principal stress and strain components with the former then transformed to the general reference system. In ord...
Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Integral Abutment-Backfill Behavior on Sand Soil-Pushover Analysis Approach
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2005-05-01)
This paper presents a study on the behavior of the abutment-backfill system under positive thermal variation in integral bridges built on sand. A structural model of a typical integral bridge is built, considering the nonlinear behavior of the piles and soil-bridge interaction effects. Static pushover analyses of the bridge are conducted to study the effect of various geometric, structural, and geotechnical parameters on the performance of the abutment-backfill system under positive thermal variations. The ...
Effective flexural rigidities for ordinary reinforced concrete columns and beams
AVŞAR, ÖZGÜR; BAYHAN, BEYHAN; Yakut, Ahmet (Wiley, 2014-04-25)
Current effective flexural rigidities proposed for use in design and analyses of reinforced concrete structures have been examined. The level of accuracy in the estimation of section rigidity plays a very important role in determining realistic values for the structural stiffness and hence the seismic forces imposed. The most significant parameters influencing the effective rigidity, which reflects the effect of cracking as well as the theoretical yielding of reinforced concrete sections, have been determin...
Citation Formats
M. Dicleli, “Simplified model for computer-aided analysis of integral bridges,” Journal of Bridge Engineering, pp. 240–248, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34340.