Alkyl-end phenanthroimidazole modification of benzotriazole based conjugated polymers for optoelectronic applications

Download
2018-10-01
Cevher, Şevki Can
Keles, Duygu
Hızalan, Gonul
Toppare, Levent Kamil
Çırpan, Ali
A new triazoloquinoxaline and benzodithiophene based copolymer was synthesized to investigate its electrochemical, optical and photovoltaic behaviors. According to the polymer design, combination of two acceptor units (benzotriazole and quinoxaline) which contribute imine bonds to the structure and a triazoloquinoxaline unit for enhancing electron accepting ability was pursued. As a result of electrochemical studies, the copolymer PTQBDT has a low lying HOMO energy level as −5.23 eV which increases the chemical stability of the resulting polymer and leads to a higher Voc. In addition, the copolymer has an ambipolar character with two well-defined redox couples in the n-doped state and multichromic behavior. In the context of optical studies, PTQBDT has wide absorption range in the visible region with a tail in the NIR region, which yields a low band gap of 1.20 eV. Organic photovoltaic devices were designed using PTQBDT (the electron donor) and PC71BM (the electron acceptor) for the preliminary studies. The resulting device exhibits a power conversion efficiency of 2.0% with a current density of 8.07 mA cm−2 , an open-circuit voltage of 0.45 V, and a fill factor of 55%. The carrier mobility of the PTQBDT was calculated as 3.00 × 10−3 cm2 V−1 s −1 via space-charge-limited current (SCLC) method.
Synthetic Metals

Suggestions

A triazoloquinoxaline and benzodithiophene bearing low band gap copolymer for electrochromic and organic photovoltaic applications
HACIOGLU, Serife O.; UNLU, Naime A.; AKTAS, Ece; HIZALAN, Gonul; Yildiz, Esra D.; Çırpan, Ali; Toppare, Levent Kamil (2017-06-01)
A new triazoloquinoxaline and benzodithiophene based copolymer was synthesized to investigate its electro-chemical, optical and photovoltaic behaviors. According to the polymer design, combination of two acceptor units (benzotriazole and quinoxaline) which contribute imine bonds to the structure and a triazoloquinoxaline unit for enhancing electron accepting ability was pursued. As a result of electrochemical studies, the copolymer PTQBDT has a low lying HOMO energy level as - 5.23 eV which increases the ch...
Alkyl end group Modification of Benzotriazole and Thiophene Containing Conjugated Polymers
Cevher, Şevki Can; Keleş, Duygu; Özdemir Hacıoğlu, Şerife; Toppare, Levent Kamil; Çırpan, Ali (null; 2016-07-21)
This study focused on modifying the alkyl‐end‐group of benzotriazole and thiophene containing conjugated polymers. Introducing a moiety with struc‐turally rigid and tendency to enhance the π‐π stacking and also absorption in the high energetic region, influence the both electronic and optic properties of the conjugated polymers. Stille cross coupling chemical polymerization method was performed to synthesize the polymer contains: benzotriazole and bisthiophene. Characterizations of polymers were done in ter...
Synthesis of bistriphenylamine- and benzodithiophene-based random conjugated polymers for organic photovoltaic applications
CETIN, Asli; ISTANBULLUOGLU, Cagla; HACIOGLU, Serife Ozdemir; CEVHER, ŞEVKİ CAN; Toppare, Levent Kamil; Çırpan, Ali (2017-11-15)
In this study, donor-acceptor random polymers containing benzotriazole acceptor and bistriphenylamine and benzodithiophene donors, P1 and P2, were successfully synthesized by Stille coupling polymerization. The effect of bistriphenylamine moiety and thiophene -conjugated linker on electrochemical, spectroelectrochemical, and optical behaviors of the polymers were investigated. Optoelectronic properties and photovoltaic performance of the polymers were examined under the illumination of AM 1.5G, 100 mWcm(-2)...
Fused conjugated structures for organic electronics
Cevher, Şevki Can; Çırpan, Ali; Department of Chemistry (2019)
In the first application, to investigate the organic light emitting diode device performances three different polymers were synthesized in which fused phenantroimidazole ring was combined with benzotirazole based polymeric backbone. P1 incorporated electroluminescent device exhibited superior performance. The highest luminance efficiency for P1 based device was 3.01 cd/A with a luminance value of 140,180 cd/m2. In the second part, monomer M1 was synthesized and functionalized from ketone (M1) to oxime (M2) ...
Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor-acceptor system
Yu, Xi; Eymur, Serkan; Singh, Vijay; Yang, Boqian; Tonga, Murat; Bheemaraju, Amarnath; Cooke, Graeme; Subramani, Chandramouleeswaran; Venkataraman, Dhandapani; Stanley, Robert J.; Rotello, Vincent M. (2012-01-01)
A donor-acceptor dyad model system using a flavin moiety as a photo-active acceptor has been synthesized for an energy and photo-induced electron transfer study. The photophysical investigations of the dyad revealed a multi-path energy and electron transfer process with a very high transfer efficiency. The photo-activity of flavin was believed to play an important role in the process, implying the potential application of flavin as a novel acceptor molecule for photovoltaics.
Citation Formats
Ş. C. Cevher, D. Keles, G. Hızalan, L. K. Toppare, and A. Çırpan, “Alkyl-end phenanthroimidazole modification of benzotriazole based conjugated polymers for optoelectronic applications,” Synthetic Metals, pp. 1–9, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34344.