Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
CBFEM-MPI: A Parallelized Version of Characteristic Basis Finite Element Method for Extraction of 3-D Interconnect Capacitances
Date
2009-02-01
Author
Ozgun, Ozlem
Mittra, Raj
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
284
views
0
downloads
Cite This
In this paper, we present a novel, non-iterative domain decomposition method, which has been parallelized by using the message passing interface (MPI) library, and used to efficiently extract the capacitance matrixes of 3-D interconnect structures, by employing characteristic basis functions (CBFs) in the context of the finite element method (FEM). In this method, which is Failed CBFEM-MPI, the computational domain is partitioned into a number of nonoverlapping subdomains in which the CBFs are constructed by employing a procedure that is different from what has been used in the past for generating them. Specifically, the CBFs for the problem at hand are determined by calculating the potentials due to a finite number of point charges located hypothetically along the boundaries of the conductors. Two major advantages of the method are substantial reduction of the matrix size-enabling the use of direct solvers-and the utilization of parallel processing techniques that provide a substantial decrease in the overall computation time. Numerical examples are included to illustrate the application of the proposed approach to a number of representative problems.
Subject Keywords
Electrical and Electronic Engineering
URI
https://hdl.handle.net/11511/34373
Journal
IEEE TRANSACTIONS ON ADVANCED PACKAGING
DOI
https://doi.org/10.1109/tadvp.2008.2002910
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Iterative leap-field domain decomposition method: a domain decomposition finite element algorithm for 3D electromagnetic boundary value problems
Ozgun, O.; Kuzuoğlu, Mustafa (Institution of Engineering and Technology (IET), 2010-04-01)
The authors introduce the iterative leap-field domain decomposition method that is tailored to the finite element method, by combining the concept of domain decomposition and the Huygens' Principle. In this method, a large-scale electromagnetic boundary value problem is partitioned into a number of suitably-defined 'small' and manageable subproblems whose solutions are assembled to obtain the global solution. The main idea of the method is the iterative application of the Huygens' Principle to the fields ra...
EFIE-Tuned Testing Functions for MFIE and CFIE
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (Institute of Electrical and Electronics Engineers (IEEE), 2017-01-01)
A recently developed numerical technique for improving the accuracy of the magnetic-field integral equation and the combined-field integral equation with low-order discretizations using the Rao-Wilton-Glisson functions is demonstrated on iterative solutions of large-scale complex problems, in order to prove the effectiveness of the proposed strategy as an alternative way for accurate and efficient analysis of multifrequency applications.
Hybrid connection of RF MEMS and SMT components in an impedance tuner
Unlu, Mehmet; Topalli, Kagan; Atasoy, Halil Ibrahim; Demir, Şimşek; Aydın Çivi, Hatice Özlem; Akın, Tayfun (Elsevier BV, 2010-01-01)
This paper presents a systematic construction of a model for a hybrid connected RF MEMS and SMT components in a reconfigurable impedance tuner. The double stub hybrid impedance tuner which employs a high number of MEMS switches is selected to demonstrate the feasibility of the connections. In the hybrid tuner, MEMS switches are actuated with DC bias signals, where SMT resistors de-couple RF from the DC lines. The hybrid tuner is realized in two steps, where the MEMS impedance tuner is fabricated on a glass ...
Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics
Ergül, Özgür Salih (Institution of Engineering and Technology (IET), 2008-01-03)
A hierarchical parallelisation of the multilevel fast multipole algorithm (MLFMA) for the efficient solution of large-scale problems in computational electromagnetics is presented. The tree structure of MLFMA is distributed among the processors by partitioning both the clusters and the samples of the fields appropriately for each level. The parallelisation efficiency is significantly improved compared to previous approaches, where only the clusters or only the fields are partitioned in a level.
Derivation of length extension formulas for complementary sets of sequences using orthogonal filterbanks
Candan, Çağatay (Institution of Engineering and Technology (IET), 2006-11-23)
A method for the construction of complementary sets of sequences using polyphase representation of orthogonal filterbanks is presented. It is shown that the case of two-channel filterbanks unifies individually derived length extension formulas for complementary sequences into a common framework and the general M-channel case produces novel formulas for the extension of complementary sets of sequences. The presented technique can also be used to generate polyphase and multilevel sequences.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Ozgun, R. Mittra, and M. Kuzuoğlu, “CBFEM-MPI: A Parallelized Version of Characteristic Basis Finite Element Method for Extraction of 3-D Interconnect Capacitances,”
IEEE TRANSACTIONS ON ADVANCED PACKAGING
, pp. 164–174, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34373.