Intrinsic and Statistical Size Effects in Microforming

Download
2017-04-28
Yalçınkaya, Tuncay
Simonovski, Igor
ÖZDEMİR, İZZET
This paper analyzes the intrinsic (grain size dependent) and the statistical (grain number and orientation distribution dependent) size effects of micron level polycrystalline metallic specimens under plastic deformation through a strain gradient crystal plasticity framework. The macroscopic and local behavior of specimens from very limited number of grains to high number of grains are studied and the results are discussed in detail taking into account different boundary conditions.
20th International ESAFORM Conference on Material Forming

Suggestions

Plastic slip patterns through rate-independent and rate-dependent plasticity
Lancioni, Giovanni; Yalçınkaya, Tuncay (2014-05-09)
Plastic deformation induces various types of dislocation microstructures at different length scales, which eventually results in a heterogeneous deformation field in metallic materials. Development of such structures manifests themselves as macroscopic hardening/softening response and plastic anisotropy during strain path changes, which is often observed during forming processes. In this paper we present two different non-local plasticity models based on non-convex potentials to simulate the intrinsic rate-...
Three Dimensional Grain Boundary Modeling in Polycrystalline Plasticity
Yalçınkaya, Tuncay; Firat, Ali Osman (2018-04-25)
At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at...
Micromechanical Modelling of Size Effects in Microforming
Yalçınkaya, Tuncay; SIMONOVSKI, IGOR; ÖZDEMİR, İZZET (2017-09-01)
This paper deals with the micromechanical modelling of the size dependent mechanical response of polycrystalline metallic materials at micron scale through a strain gradient crystal plasticity framework. The model is implemented into a Finite Element software as a coupled implicit user element subroutine where the plastic slip and displacement fields are taken as global variables. Uniaxial tensile tests are conducted for microstructures having different number of grains with random orientations in plane str...
Multi Scale Modeling of Microstructure Evolution Induced Anisotropy in Metals
Yalçınkaya, Tuncay (2013-06-01)
This paper presents two crystal plasticity based computational constitutive models for the intrinsic formation of plastic microstructure during monotonic loading and its altered evolution under strain path changes in metal forming operations. The formation step is modeled via a non-convex strain gradient crystal plasticity framework which could simulate the intrinsic development of the plastic microstructures. The evolution under strain path changes is modeled via phenomenologically based constitutive equat...
Crystal plasticity modeling of additively manufactured metallic microstructures
Acar, Sadik Sefa; Bulut, Orhun; Yalçınkaya, Tuncay (2021-01-01)
Different manufacturing processes such as flow forming, rolling, wire drawing and additive manufacturing induce anisotropic grain structure and texture evolution at the micro scale, which results in macroscopic anisotropic plastic behavior. Among these microstructures, development of columnar grain structure is quite common especially in additively manufactured metallic materials. A systematic micromechanical analysis is necessary to evaluate the influence of both grain morphology and texture (orientation a...
Citation Formats
T. Yalçınkaya, I. Simonovski, and İ. ÖZDEMİR, “Intrinsic and Statistical Size Effects in Microforming,” Dublin City Univ, Dublin, IRELAND, 2017, vol. 1896, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34379.