Parameter Identification of Riveted Joints Using Vibration Methods

Altuntop, Elif
Aykan, Murat
Şahin, Melin
Rivets are widely used in several industries including aerospace, shipbuilding and construction. Aircraft components such as wings and fuselages are some examples of riveted structures. Accurate parameter identification of these joints is critical since excessive number of rivets is present in such structures. Furthermore, modeling structures with fasteners has always been a challenge since these members might show nonlinear behavior. In this study, the FEM of a continuous plate is constructed and modal tests are performed in order to have a valid modeling strategy. After a good correlation between finite element analyses (FEA) and tests is obtained, a finite element model with riveted joints is constructed and parameters of these fasteners are identified by means of vibration measurements and optimization.


Residual stress analysis of riveting process using finite element method
Karasan, M Murat; Kadıoğlu, Fevzi Suat; Department of Mechanical Engineering (2007)
Rivets are widely used as a means of fastening in airframe construction industry. There are various types of riveted joints on an aircraft fuselage or on a helicopter body. Among the other types of fasteners riveted joints are preferred in such applications due to; their permanence after installation and their economical advantages. In a riveted joint, it is known that residual stresses are present as a result of the installation process. Furthermore, during the flight of an aircraft, the fuselage is loaded...
Curved beam strength and toughness of thin ply cfrp non crimp fabric laminates
Arca, Miray; Papila, Melih; Çöker, Demirkan (null; 2015-09-12)
Carbon fiber reinforced plastics are most widely used composite materials in aerospace and wind turbine industries. Their superior in plane properties with light weight structures and also ability to change and design the structure and form make composites preferable to metallic materials. Composites are applied to the primary load carrying members with complex and curved geometries with the new manufacturing techniques. On the other hand, failure mechanisms of composites are different and complicated than ...
Damage Characterisation in FRP Sandwich Beams using a Wavelet based Multifractal Approach
Dawood, Tariq; Shenoi, Ajit R.; Veres, S. M.; Gunning, M. J.(2004-07-07)
Fibre reinforced plastic (FRP) sandwich composite materials are widely used in the construction of aerospace and marine structures. A cause for concern however in the use of these materials is the fact that internal defects can occur between layers which, if not identified early on, can lead to rapid structural degradation. This paper describes an approach, based on measuring structural vibration characteristics, to identify these internal defects. The idea being that an occurrence of a defect of this natur...
Experimental investigation of failure mechanism in cross-ply and fabric curved composite laminates
Çevik, Ahmet; Çöker, Demirkan; Department of Aerospace Engineering (2021-8)
Laminated curved-shape composite parts which are used in the spar and ribs in aircraft and wind turbine blades are subjected to high interlaminar tensile and shear stresses. These stresses cause delamination and subsequent reduction in load-carrying capacity. In this study, failure mechanism of cross-ply and fabric curved composite laminates under pure transverse loading are examined experimentally using an in-house designed test fixture. Stress field over the curved beam is obtained with finite element ana...
Development of bolted flange design tool based on finite element analysis and artificial neural network
Yıldırım, Alper; Kayran, Altan; Department of Aerospace Engineering (2015)
In bolted flange connections, commonly utilized in aircraft engine designs, structural integrity and minimization of the weight are achieved by the optimum combination of the design parameters utilizing the outcome of many structural analyses. Bolt size, number of bolts, bolt locations, casing thickness, flange thickness, bolt preload, and axial external force are some of the critical design parameters in bolted flange connections. Theoretical analysis and finite element analysis (FEA) are two main approach...
Citation Formats
E. Altuntop, M. Aykan, and M. Şahin, “Parameter Identification of Riveted Joints Using Vibration Methods,” 2015, Accessed: 00, 2020. [Online]. Available: