Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
3D Planar Representation of Stereo Depth Images for 3DTV Applications
Date
2014-12-01
Author
Ozkalayci, Burak O.
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
342
views
0
downloads
Cite This
The depth modality of the multiview video plus depth (MVD) format is an active research area, whose main objective is to develop depth image based rendering friendly efficient compression methods. As a part of this research, a novel 3D planar-based depth representation is proposed. The planar approximation of multiple depth images are formulated as an energy-based co-segmentation problem by a Markov random field model. The energy terms of this problem are designed to mimic the rate-distortion tradeoff for a depth compression application. A novel algorithm is developed for practical utilization of the proposed planar approximations in stereo depth compression. The co-segmented regions are also represented as layered planar structures forming a novel single-reference MVD format. The ability of the proposed layered planar MVD representation in decoupling the texture and geometric distortions make it a promising approach. Proposed 3D planar depth compression approaches are compared against the state-of-the-art image/video coding standards by objective and visual evaluation and yielded competitive performance.
Subject Keywords
Depth image compression
,
Energy based model fitting
,
MRF
,
Graph cut
,
MVD
URI
https://hdl.handle.net/11511/34414
Journal
IEEE TRANSACTIONS ON IMAGE PROCESSING
DOI
https://doi.org/10.1109/tip.2014.2360452
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Contrast Enhancement of Microscopy Images Using Image Phase Information
Çakır, Serhat; Atalay, Rengül; ÇETİN, AHMET ENİS (2018-01-01)
Contrast enhancement is an important preprocessing step for the analysis of microscopy images. The main aim of contrast enhancement techniques is to increase the visibility of the cell structures and organelles by modifying the spatial characteristics of the image. In this paper, phase information-based contrast enhancement framework is proposed to overcome the limitations of existing image enhancement techniques. Inspired by the groundbreaking design of the phase contrast microscopy (PCM), the proposed ima...
Improving interactive classification of satellite image content
Tekkaya, Gökhan; Atalay, Mehmet Volkan; Department of Computer Engineering (2007)
Interactive classication is an attractive alternative and complementary for automatic classication of satellite image content, since the subject is visual and there are not yet powerful computational features corresponding to the sought visual features. In this study, we improve our previous attempt by building a more stable software system with better capabilities for interactive classication of the content of satellite images. The system allows user to indicate a few number of image regions that contain a...
Linear mixed model with Laplace distribution (LLMM)
Gökalp Yavuz, Fulya (2018-03-01)
Linear mixed modeling (LMM) is a comprehensive technique used for clustered, panel and longitudinal data. The main assumption of classical LMM is having normally distributed random effects and error terms. However, there are several situations for that we need to use heavier tails distributions than the (multivariate) normal to handle outliers and/or heavy tailness in data. In this study, we focus on LMM using the multivariate Laplace distribution which is known as the heavy tailed alternative to the normal...
Object Segmentation in Multi-view Video via Color, Depth and Motion Cues
Cigla, Cevahir; Alatan, Abdullah Aydın (2009-01-01)
In the light of dense depth map estimation, motion estimation and object segmentation, the research on multi-view video (MVV) content has becoming increasingly popular due to its wide application areas in the near future. In this work, object segmentation problem is studied by additional cues due to depth and motion fields. Segmentation is achieved by modeling images as graphical models and performing popular Normalized Cuts method with some modifications. In the graphical models, each node is represented b...
Alignment of uncalibrated images for multi-view classification
Arık, Sercan Ömer; Vural, Elif; Frossard, Pascal (2011-12-29)
Efficient solutions for the classification of multi-view images can be built on graph-based algorithms when little information is known about the scene or cameras. Such methods typically require a pairwise similarity measure between images, where a common choice is the Euclidean distance. However, the accuracy of the Euclidean distance as a similarity measure is restricted to cases where images are captured from nearby viewpoints. In settings with large transformations and viewpoint changes, alignment of im...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. O. Ozkalayci and A. A. Alatan, “3D Planar Representation of Stereo Depth Images for 3DTV Applications,”
IEEE TRANSACTIONS ON IMAGE PROCESSING
, pp. 5222–5232, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34414.