A Monte Carlo-based Poisson's equation solver parallelized with Coarray Fortran

2016-01-01
ŞENGİL, NEVSAN
Tumuklu, Ozgur
Çelenligil, Mehmet Cevdet
Poisson's equation is found in many scientific problems, such as heat transfer and electric field calculations. Although many different techniques are involved in solving Poisson's equation, we focused on the Monte Carlo method (MCM). We preferred the MCM not only because of its simple algorithm but also for its excellent parallel efficiency. Parallelization is one of the most effective techniques for reducing computation time. Among many parallelization paradigms, such as OpenMP (open multiprocessing), MPI (message passing interface), and PGAS (partitioned global address space), we adopted the PGAS-based Coarray Fortran (CAF). In this paper, we demonstrated that parallelization of Poisson's equation solver with CAF was quite painless. After parallelization, we solved Poisson's equation for a nonrectangular domain. We started with a workstation that consisted of 8 cores and we continued with a Cray supercomputer of up to 512 cores. The results of the parallel solvers were validated using exact solutions. We demonstrated that the error was less than 1.6%. Additionally, solution times and speedups of the CAF-based solver were compared with a solver that utilized MPI or OpenMP. OpenMP was not able to compete against CAF and MPI because of the "while" loop restriction. The CAF-based solver performed slightly better (7.5%) than the MPI provided that core numbers were between 2 and 32. However, CAF and MPI performed similarly for higher numbers of cores.
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

Suggestions

The mean field model with P-2 theta(2) coupling for the smectic A-smectic C* phase transition in liquid crystals
Salihoglu, S; Yurtseven, Hasan Hamit; Giz, A; Kayisoglu, D; Konu, A (Informa UK Limited, 1998-01-01)
Using mean field theory with a P(2)theta (2) coupling term in the free energy expansion, we calculate the polarization as a function of temperature for the smectic A-smectic C* phase transition in a liquid crystalline material. Our calculated polarization values are in good agreement with the experimental data.
A CSCM approximation of steady MHD flow and heat transfer between parallel plates with hydrodynamic slip and convective boundary conditions
Tezer, Münevver; Türk, Önder (null; 2019-10-04)
The steady magnetohydrodynamic (MHD) flow together with its heat transfer between parallel plates is considered in which the electrically conducting fluid has temperature dependent properties such as viscosity, thermal and electrical conductivity. The fluid is driven by a constant pressure gradient, and a uniform external transverse magnetic field is applied perpendicular to the plates. The effects of viscous and Joule dissipations are considered in the energy equation, and the fluid is assumed to be slippi...
A DRBEM solution for MHD pipe flow in a conducting medium
Han Aydın, S.; Tezer, Münevver (Elsevier BV, 2014-3)
Numerical solutions are given for magnetohydrodynamic (MHD) pipe flow under the influence of a transverse magnetic field when the outside medium is also electrically conducting. Convection-diffusion-type MHD equations for inside the pipe are coupled with the Laplace equation defined in the exterior region, and the continuity requirements for the induced magnetic fields are also coupled on the pipe wall. The most general problem of a conducting pipe wall with thickness, which also has magnetic induction gene...
A projection-based stabilized finite element method for steady-state natural convection problem
Çıbık, Aytekin; Kaya Merdan, Songül (Elsevier BV, 2011-9)
We formulate a projection-based stabilization finite element technique for solving steady-state natural convection problems. In particular, we consider heat transport through combined solid and fluid media. This stabilization does not act on the large flow structures. Based on the projection stabilization idea, finite element error analysis of the problem is investigated and optimal errors for the velocity, temperature and pressure are established. We also present some numerical tests which both verify the ...
Monte Carlo solution of a radiative heat transfet problem in a 3-D rectangular enclosure containing absorbing, emitting and anisotropically scattering medium
Demirkaya, Gökmen; Arınç, Faruk; Department of Mechanical Engineering (2003)
In this study, the application of a Monte Carlo method (MCM) for radiative heat transfer in three-dimensional rectangular enclosures was investigated. The study covers the development of the method from simple surface exchange problems to enclosure problems containing absorbing, emitting and isotropically/anisotropically scattering medium. The accuracy of the MCM was first evaluated by applying the method to cubical enclosure problems. The first one of the cubical enclosure problems was prediction of radiat...
Citation Formats
N. ŞENGİL, O. Tumuklu, and M. C. Çelenligil, “A Monte Carlo-based Poisson’s equation solver parallelized with Coarray Fortran,” TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, pp. 4545–4553, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34422.