SYMBOLIC EVALUATION OF THE ERICKSEN-LESLIE EQUATIONS IN THE COMPUTATION DOMAIN

1994-06-01
Güler, Murat
The flow behaviour and the molecular orientation of many anisotropic fluids, like nematic liquid crystals, can be described by the Ericksen-Leslie equations. A mapping from the physical domain to a computational domain is needed for the finite-difference solution of the equations. The numerical solution of the equations of motion using an implicit scheme, which is required for stability reasons in the evaluation of the linear momentum equations, is not straightforward due to the complexity of the divergence of the stress tensor in the computational domain. To overcome this difficulty the mapped linear momentum equations are, first, evaluated symbolically using a computer program designed for this purpose and then the analytical results are used in the numerical solution of the equations of motion. A contracted channel flow is taken as a case study and some simulation results are given.
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS

Suggestions

Numerical Solution of MHD Incompressible Convection Flow in Channels
Gurbuz, Merve; Tezer, Münevver (2019-1-01)
The purpose of this paper is to study numerically the influence of the magnetic field, buoyancy force and viscous dissipation on the convective flow and temperature of the fluid in a square cavity, lid-driven cavity, and lid-driven cavity with an obstacle at the center. The continuity, momentum and energy equations are coupled including buoyancy and magnetic forces, and energy equation contains Joule heating and viscous dissipation. The equations are solved in terms of stream function, vorticity and tempera...
Controlled synthesis of organic-inorganic composite particles
Erçelik, Elif; Büküşoğlu, Emre; Aydoğan, Nihal; Department of Chemical Engineering (2022-8-26)
Liquid crystal (LC) is a state of matter having long-range orientational order between crystalline solid and isotropic liquid, and its molecular orientation can be altered with external stimuli. The polymerization of liquid crystal droplets has been widely used for the synthesis of LC-templated functional materials due to its ordering property and fluidic behavior. In this study, we investigated the synthesis of composite particles with controlled internal and interfacial structure using surface-modified na...
Numerical Analysis of One-Dimensional Sound Propagation Through a Duct Containing Water Droplets
Arslan, Ersen; Özyörük, Yusuf; Çalışkan, Mehmet (2017-03-01)
In this paper sound propagation through an air-filled circular duct containing water droplets has been studied by solving numerically one-dimensional linearized Euler equations in frequency domain. Interactions between the liquid and gas phases were accounted for by proper source terms. Waves were introduced into the domain via Perfectly Matched Layers (PML) equations applied in finite regions adjacent to the truncated ends of the duct. Absorption and dispersion results due to energy transfer from air to th...
Transient behavior of a cylindrical adsorbent bed during the adsorption process
SOLMUŞ, İsmail; Yamali, Cemil; Yıldırım, Cihan; BİLEN, Kadir (2015-03-15)
A transient two dimensional local thermal non-equilibrium model is developed to investigate the influences of heat transfer and operating parameters on the dynamic behavior of a cylindrical adsorbent bed during the adsorption process. Local volume averaging method is used to drive the macro scale governing conservation equations from the micro scale ones. In the model, linear driving force model and Darcy's equation are considered to account for the resistances to internal and external mass transfer, respec...
Computational Modeling of the Effects of Viscous Dissipation on Polymer Melt Flow Behavior During Injection Molding Process in Plane Channels
Tutar, M.; Karakuş, Ali (2013-02-01)
The present finite volume method based fluid flow solutions investigate the boundary-layer flow and heat transfer characteristics of polymer melt flow in a rectangular plane channel in the presence of the effect of viscous dissipation and heat transfer by considering the viscosity and density variations in the flow. For different inflow velocity boundary conditions and the injection polymer melt temperatures, the viscous dissipation effects on the velocity and temperature distributions are studied extensive...
Citation Formats
M. Güler, “SYMBOLIC EVALUATION OF THE ERICKSEN-LESLIE EQUATIONS IN THE COMPUTATION DOMAIN,” JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, pp. 309–321, 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34557.