Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning

Rahnama, Arash
Alchihabi, Abdullah
Gupta, Vijay
Antsaklis, Panos J.
Yarman Vural, Fatoş Tunay
The main goal of this study is to extract a set of brain networks in multiple time-resolutions to analyze the connectivity patterns among the anatomic regions for a given cognitive task. We suggest a deep architecture which learns the natural groupings of the connectivity patterns of human brain in multiple time-resolutions. The suggested architecture is tested on task data set of Human Connectome Project (HCP) where we extract multi-resolution networks, each of which corresponds to a cognitive task. At the first level of this architecture, we decompose the fMRI signal into multiple sub-bands using wavelet decompositions. At the second level, for each sub-band, we estimate a brain network extracted from short time windows of the fMRI signal. At the third level, we feed the adjacency matrices of each mesh network at each time-resolution into an unsupervised deep learning algorithm, namely, a Stacked De noising Auto-Encoder (SDAE). The outputs of the SDAE provide a compact connectivity representation for each time window at each sub-band of the fMRI signal. We concatenate the learned representations of all sub-bands at each window and cluster them by a hierarchical algorithm to find the natural groupings among the windows. We observe that each cluster represents a cognitive task with a performance of 93% Rand Index and 71% Adjusted Rand Index. We visualize the mean values and the precisions of the networks at each component of the cluster mixture. The mean brain networks at cluster centers show the variations among cognitive tasks and the precision of each cluster shows the within cluster variability of networks, across the subjects.


Özdemir, Ataman; Cetin, C. Yasemin Yardimci (2014-06-27)
In this study, stacked autoencoders which are widely utilized in deep learning research are applied to remote sensing domain for hyperspectral classification. High dimensional hyperspectral data is an excellent candidate for deep learning methods. However, there are no works in literature that focuses on such deep learning approaches for hyperspectral imagery. This study aims to fill this gap by utilizing stacked autoencoders. Experiments are conducted on the Pavia University scene. Using stacked autoencode...
Learning transferability of cognitive tasks by graph generation for brain decoding
Coşkun, Bilgin; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2021-12-10)
Brain decoding involves analyzing the cognitive states of human brain by using some statistical techniques in order to understand the relations among the cognitive states, based on neuroimaging data. A very powerful tool to acquire the brain data is functional magnetic resonance images (fMRI), which generates three-dimensional brain volume at each time instant, while a subject performs a cognitive task involving social activities, emotion processing, game playing, memory etc. However, it is very difficult a...
Representation of Cognitive Processes Using the Minimum Spanning Tree of Local Meshes
Firat, Orhan; Ozay, Mete; Onal, Itir; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-07-07)
A new graphical model called Cognitive Process Graph (CPG) is proposed, for classifying cognitive processes based on neural activation patterns which are acquired via functional Magnetic Resonance Imaging (fMRI) in brain. In the CPG, first local meshes are formed around each voxel. Second, the relationships between a voxel and its neighbors in a local mesh, which are estimated by using a linear regression model, are used to form the edges among the voxels (graph nodes) in the CPG. Then, a minimum spanning t...
A Hierarchical representation and decoding of fMRI data by partitioning a brain network
Moğultay, Hazal; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2017)
In this study, we propose a hierarchical network representation of human brain extracted from fMRI data. This representation consists of two levels. In the first level, we form a network among the voxels, smallest building block of fMRI data. In the second level, we define a set of supervoxels by partitioning the first level network into a set of subgraphs, which are assu med to represent homogeneous brain regions with respect to a predefined criteria. For this purpose, we develop a novel brain parcellation...
Analyzing Complex Problem Solving by Dynamic Brain Networks
Alchihabi, Abdullah; Ekmekci, Ömer; Kivilcim, Baran B.; Newman, Sharlene D.; Yarman Vural, Fatos T. (2021-12-01)
Complex problem solving is a high level cognitive task of the human brain, which has been studied over the last decade. Tower of London (TOL) is a game that has been widely used to study complex problem solving. In this paper, we aim to explore the underlying cognitive network structure among anatomical regions of complex problem solving and its subtasks, namely planning and execution. A new computational model for estimating a brain network at each time instant of fMRI recordings is proposed. The suggested...
Citation Formats
A. Rahnama, A. Alchihabi, V. Gupta, P. J. Antsaklis, and F. T. Yarman Vural, “Encoding Multi-Resolution Brain Networks Using Unsupervised Deep Learning,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34564.