Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generalized force vectors for multi-mode pushover analysis of torsionally coupled systems
Date
2014-10-25
Author
Kaatsız, Kaan
Sucuoğlu, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
312
views
0
downloads
Cite This
A generalized multi-mode pushover analysis procedure was developed for estimating the maximum inelastic seismic response of symmetrical plan structures under earthquake ground excitations. Pushover analyses are conducted with story-specific generalized force vectors in this procedure, with contributions from all effective modes. Generalized pushover analysis procedure is extended to three-dimensional torsionally coupled systems in the presented study. Generalized force distributions are expressed as the combination of modal forces to simulate the instantaneous force distribution acting on the system when the interstory drift at a story reaches its maximum value during seismic response. Modal contributions to the generalized force vectors are calculated by a modal scaling rule, which is based on the complete quadratic combination. Generalized forces are applied to the mass centers of each story incrementally for producing nonlinear static response. Maximum response quantities are obtained when the individual frames attain their own target interstory drift values in each story. The developed procedure is tested on an eight-story frame under 15 ground motions, and assessed by comparing the results obtained from nonlinear time history analysis. The method is successful in predicting the torsionally coupled inelastic response of frames responding to large interstory drift demands. Copyright (c) 2014 John Wiley & Sons, Ltd.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Earth and Planetary Sciences (miscellaneous)
URI
https://hdl.handle.net/11511/34569
Journal
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
DOI
https://doi.org/10.1002/eqe.2434
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Generalized force vectors for multi-mode pushover analysis
Sucuoğlu, Haluk (Wiley, 2011-01-01)
A generalized pushover analysis (GPA) procedure is developed for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure comprises applying different generalized force vectors separately to the structure in an incremental form with increasing amplitude until a prescribed seismic demand is attained for each generalized force vector. A generalized force vector is expressed as a combination of modal forces, and simulates the instantaneous force distribution ac...
PREDICTION OF SEISMIC ENERGY-DISSIPATION IN SDOF SYSTEMS
NURTUG, A; Sucuoğlu, Haluk (Wiley, 1995-09-01)
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio w...
An improvement to linear-elastic procedures for seismic performance assessment
Gunay, Mehmet Selim; Sucuoğlu, Haluk (Wiley, 2010-07-10)
An improved linear-elastic analysis procedure is developed in this paper as a simple approximate method for displacement-based seismic assessment of the existing buildings. The procedure is mainly based on reducing the stiffness of structural members that are expected to respond in the inelastic range in a single global iteration step. Modal spectral displacement demands are determined from the equal displacement rule. Response predictions obtained from the proposed procedure are evaluated comparatively by ...
Prediction of input energy spectrum: attenuation models and velocity spectrum scaling
Alici, F. S.; Sucuoğlu, Haluk (Wiley, 2016-10-25)
Recent improvements in performance-based earthquake engineering require realistic description of seismic demands and accurate estimation of supplied capacities in terms of both forces and deformations. Energy based approaches have a significant advantage in performance assessment because excitation and response durations, accordingly energy absorption and dissipation characteristics, are directly considered whereas force and displacement-based procedures are based only on the maximum response parameters. En...
A numerical study on response factors for steel wall-frame systems
Arslan, Hakan; Topkaya, Cem (Wiley, 2010-11-01)
A numerical investigation was undertaken to evaluate the response of dual structural systems that consisting of steel plate shear walls and moment-resisting frames. The primary objective of the study was to investigate the influence of elastic base shear distribution between the wall and the frame on the global system response. A total of 10 walls and 30 wall frame systems, ranging from 3 to 15 stories, were selected for numerical assessment. These systems represent cases in which the elastic base shear res...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Kaatsız and H. Sucuoğlu, “Generalized force vectors for multi-mode pushover analysis of torsionally coupled systems,”
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS
, pp. 2015–2033, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34569.