Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A Distributed Fault-Tolerant Topology Control Algorithm for Heterogeneous Wireless Sensor Networks
Date
2015-04-01
Author
Bagci, Hakki
KÖRPEOĞLU, İBRAHİM
Yazıcı, Adnan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
This paper introduces a distributed fault-tolerant topology control algorithm, called the Disjoint Path Vector (DPV), for heterogeneous wireless sensor networks composed of a large number of sensor nodes with limited energy and computing capability and several supernodes with unlimited energy resources. The DPV algorithm addresses the k-degree Anycast Topology Control problem where the main objective is to assign each sensor's transmission range such that each has at least k-vertex-disjoint paths to supernodes and the total power consumption is minimum. The resulting topologies are tolerant to k - 1 node failures in the worst case. We prove the correctness of our approach by showing that topologies generated by DPV are guaranteed to satisfy k-vertex supernode connectivity. Our simulations show that the DPV algorithm achieves up to 4-fold reduction in total transmission power required in the network and 2-fold reduction in maximum transmission power required in a node compared to existing solutions.
Subject Keywords
Signal Processing
,
Hardware and Architecture
,
Computational Theory and Mathematics
URI
https://hdl.handle.net/11511/34649
Journal
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
DOI
https://doi.org/10.1109/tpds.2014.2316142
Collections
Department of Computer Engineering, Article