Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Relationships between Felt Intensity and Recorded Ground-Motion Parameters for Turkey
Download
index.pdf
Date
2014-02-01
Author
Bilal, Mustafa
Askan Gündoğan, Ayşegül
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
227
views
143
downloads
Cite This
In this paper, empirical relationships between modified Mercalli intensity (MMI) and recorded peak ground-motion parameters are developed for Turkey. Strong ground motion data from moderate-to-large earthquakes are employed along with the corresponding MMI information inferred from isoseismal maps and earthquake damage reports. Linear least-squares regression technique is used to derive the following simple relationships between MMI and peak ground acceleration (PGA), peak ground velocity (PGV), and pseudospectral acceleration (PSA): MMI = 0.132 + 3.884 x log (PGA), MMI = 2.673 + 4.340 x log(PGV), MMI = -0.247 + 3.404 x log[PSA(0.3 s)], MMI = -0: 934 + 4.119 x log[PSA(1.0 s)], and MMI = -0.313 + 4.453 x log[PSA(2.0 s)].
Subject Keywords
Geochemistry and Petrology
,
Geophysics
URI
https://hdl.handle.net/11511/34676
Journal
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
DOI
https://doi.org/10.1785/0120130093
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Evaluation of Site Response with Alternative Methods: A Case Study for Engineering Implications
Sisman, Fatma Nurten; Askan Gündoğan, Ayşegül; Asten, Michael (Springer Science and Business Media LLC, 2018-01-01)
In this paper, efficiency of alternative geophysical techniques for site response is evaluated in two sedimentary basins on the North Anatolian Fault Zone. For this purpose, fundamental frequencies of soils and corresponding amplitudes obtained from empirical horizontal-to-vertical spectral ratio curves from microtremors, weak motions and strong motions are compared with results from one-dimensional theoretical transfer functions. Theoretical transfer functions are computed using S-wave velocity profiles de...
Ground Motion Characterization for Vertical Ground Motions in Turkey—Part 2: Vertical Ground Motion Models and the Final Logic Tree
Gülerce, Zeynep; SANDIKKAYA, MUSTAFA ABDULLAH (Springer Science and Business Media LLC, 2020-05-01)
The main objectives of this study are: (1) to choose the vertical ground motion models (GMMs) that are consistent with the magnitude, distance, depth, and site amplification scaling of the updated Turkish ground motion database, and (2) to combine the vertical GMMs with the V/H ratio models selected in the accompanying paper (Alipour et al. in Pure Appl Geophys 1-22, 2019) to provide the ground motion characterization logic tree for the vertical ground motion component in Turkey. Four global vertical GMMs [...
Sensitivity Study of Hydrodynamic Parameters During Numerical Simulations of Tsunami Inundation
Ozer, Ceren; Yalçıner, Ahmet Cevdet (Springer Science and Business Media LLC, 2011-11-01)
This paper describes the analysis of a parameter, "hydrodynamic demand,'' which can be used to represent the potential for tsunami drag force related damage to structures along coastlines. It is derived from the ratio of drag force to hydrostatic force caused by a tsunami on the structure. It varies according to the instantaneous values of the current velocities and flow depths during a tsunami inundation. To examine the effects of a tsunami in the present study, the analyses were performed using the tsunam...
Assessment of Point-Source Stochastic Simulations Using Recently Derived Ground-Motion Prediction Equations
Akkar, Dede Sinan; Yenier, Emrah (Seismological Society of America (SSA), 2009-12-01)
The simplicity of the point-source stochastic simulation method makes it one of the most appealing tools for the quantification of ground motions for seismic hazard related studies. In this article, we scrutinize the limitations of this technique in terms of fundamental geophysical model parameters. To achieve this objective, we use the estimations of recent Next Generation Attenuation (NGA) and European empirical ground-motion models that are based on global strong-motion databases. The generated synthetic...
On Baseline Corrections and Uncertainty in Response Spectra for Baseline Variations Commonly Encountered in Digital Accelerograph Records
Akkar, Dede Sinan; Boore, David M. (Seismological Society of America (SSA), 2009-06-01)
Most digital accelerograph recordings are plagued by long-period drifts, best seen in the velocity and displacement time series obtained from integration of the acceleration time series. These drifts often result in velocity values that are nonzero near the end of the record. This is clearly unphysical and can lead to inaccurate estimates of peak ground displacement and long-period spectral response. The source of the long-period noise seems to be variations in the acceleration baseline in many cases. These...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Bilal and A. Askan Gündoğan, “Relationships between Felt Intensity and Recorded Ground-Motion Parameters for Turkey,”
BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA
, pp. 484–496, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34676.