Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

2018-02-28
Boruban, Cansu
Nalbant Esentürk, Emren
Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BETanalyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70 % increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.
JOURNAL OF NANOPARTICLE RESEARCH

Suggestions

Active carbon/graphene hydrogel nanocomposites as a symmetric device for supercapacitors
ATEŞ, MURAT; Cinar, Damla; Caliskan, Sinan; GEÇGEL, ÜNAL; ÜNER, OSMAN; BAYRAK, YÜKSEL; Candan, Idris (Informa UK Limited, 2016-01-01)
Activated carbons (ACs) are successfully synthesized from Elaeagnus grain by a simple chemical synthesis methodology and demonstrated as novel, suitable supercapacitor electrode materials for graphene hydrogel (GH)/AC nanocomposites. GH/AC nanocomposites are synthesized via hydrothermal process at temperature of 180 degrees C. The low-temperature thermal exfoliation approach is convenient for mass production of graphene hydrogel (GH) at low cost and it can be used as electrode material for energy storage ap...
Vulcan-Supported Pt Electrocatalysts for PEMFCs Prepared using Supercritical Carbon Dioxide Deposition
Bayrakceken, Ayse; Smirnova, Alevtina; Kitkamthorn, Usanee; Aindow, Mark; Tuerker, Lemi; Eroğlu, İnci; ERKEY, CAN (Informa UK Limited, 2009-01-01)
In this study, supercritical carbon dioxide (scCO(2)) deposition was used to prepare vulcan-supported Pt (Pt/Vulcan) electrocatalysts for proton exchange membrane fuel cells (PEMFCs), and the effects of process variables on the properties of the electrocatalysts were investigated. The two different methods used to reduce the organometallic precursor were thermal reduction in nitrogen at atmospheric pressure and thermal reduction in scCO(2). In the former method, the maximum Pt loading achieved was 9%, and t...
Alkaline Hydrothermal Synthesis, Characterization, and Photocatalytic Activity of TiO2 Nanostructures: The Effect of Initial TiO2 Phase
Erdogan, Nursev; PARK, JONGEE; Choi, Woohyuk; Kim, Soo Young; Öztürk, Abdullah (American Scientific Publishers, 2019-03-01)
One-dimensional (1D) titanate nanostructures were synthesized by hydrothermal route, using commercially available TiO2 (P25) and anatase powders as precursor materials and strong NaOH solution as catalyzer. The prepared titanates were calcined, followed by protonation to produce TiO2 nanostructures having enhanced photocatalytic and photovoltaic properties. The synthesized TiO2 1D nanostructures were characterized using field-emission scanning electron microscope, high-resolution electron microscope, X-ray ...
Solubility of CO2-philic polyhedral oligomeric silsesquioxanes in supercritical carbon dioxide
Demirtaş, Cansu; Dilek Hacıhabiboğlu, Çerağ; Department of Chemical Engineering (2019)
Polyhedral oligomeric silsesquioxanes (POSS) with different functional groups and carbon dioxide (CO2) binary systems’ phase behavior have been studied in a high- pressure visible cell to contribute to the development of environmentally friendly processes of POSS with supercritical carbon dioxide. POSS can show different hybrid material properties due to its functional groups attached to its cage structure. Supercritical carbon dioxide, which is referred as an environmentally friendly solvent, can exhibit s...
Phase transition of chemically synthesized FePt nanoparticles under high pressure
ŞİMŞEK, TELEM; Karci, Ozgur; ÖZCAN, ŞADAN (The Scientific and Technological Research Council of Turkey, 2018-01-01)
We present the results of a study related to phase transformation of chemically synthesized FePt nanoparticles under high pressure from face-centered cubic into face-centered tetragonal structure. As-synthesized nanoparticles are around 4.5 nm and show superparamagnetic behavior at 300 K. After annealing under 60 bar pressure of hydrogen at 400 degrees C for 2 h, nanoparticles exhibit strong ferromagnetic behavior with 5391 Oe coercivity. Results show that high-pressure annealing lowers the decomposition te...
Citation Formats
C. Boruban and E. Nalbant Esentürk, “Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption,” JOURNAL OF NANOPARTICLE RESEARCH, pp. 0–0, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34717.