Effect of Annotation Errors on Drone Detection with YOLOv3

2020-07-28
Following the recent advances in deep networks, object detection and tracking algorithms with deep learning backbones have been improved significantly; however, this rapid development resulted in the necessity of large amounts of annotated labels. Even if the details of such semi-automatic annotation processes for most of these datasets are not known precisely, especially for the video annotations, some automated labeling processes are usually employed. Unfortunately, such approaches might result with erroneous annotations. In this work, different types of annotation errors for object detection problem are simulated and the performance of a popular state-of-the-art object detector, YOLOv3, with erroneous annotations during training and testing stages is examined. Moreover, some inevitable annotation errors in Anti-UAV Challenge dataset is also examined in this manner, while proposing a solution to correct such annotation errors of this valuable data set.

Suggestions

Effect of quantization on the performance of deep networks
Kütükcü, Başar; Bozdağı Akar, Gözde.; Department of Electrical and Electronics Engineering (2020)
Deep neural networks performed greatly for many engineering problems in recent years. However, power and memory hungry nature of deep learning algorithm prevents mobile devices to benefit from the success of deep neural networks. The increasing number of mobile devices creates a push to make deep network deployment possible for resource-constrained devices. Quantization is a solution for this problem. In this thesis, different quantization techniques and their effects on deep networks are examined. The tech...
Effects of 3D Registration on Subspace Based Face Recognition Methods
USTUN, Bulent; Halıcı, Uğur; ULUSOY PARNAS, İLKAY (2008-04-22)
The effect of 3D registation is examined through various subspace based recognition algorithms. Iterative Closest Point (ICP) algorithm and its variations are used for registration and Eigenface, Fisherface, NMF (Nonnegative Matrix Factorization) and ICA (Independent Component Analysis) are used for recognition. It is observed that ICP and its variations converges to the place on the database FRGC v. 1 used. Among the recognition algorithms Fisher-face and ICA are performed better than the others.
Competing labels: a heuristic approach to pseudo-labeling in deep semi-supervised learning
Bayrak, Hamdi Burak; Ertekin Bolelli, Şeyda; Yücel, Hamdullah; Department of Scientific Computing (2022-2-10)
Semi-supervised learning is one of the dominantly utilized approaches to reduce the reliance of deep learning models on large-scale labeled data. One mostly used method of this approach is pseudo-labeling. However, pseudo-labeling, especially its originally proposed form tends to remarkably suffer from noisy training when the assigned labels are false. In order to mitigate this problem, in our work, we investigate the gradient sent to the neural network and propose a heuristic method, called competing label...
Effect of some software design patterns on real time software performance
Ayata, Mesut; Bilgen, Semih; Department of Information Systems (2010)
In this thesis, effects of some software design patterns on real time software performance will be investigated. In real time systems, performance requirements are critical. Real time system developers usually use functional languages to meet the requirements. Using an object oriented language may be expected to reduce performance. However, if suitable software design patterns are applied carefully, the reduction in performance can be avoided. In this thesis, appropriate real time software performance metri...
The Effect of Loss Functions on the Deep Learning Modeling for the Flow Field Predictions Around Airfoils
Doğan, Ali; Duru, Cihat; Alemdar, Hande; Baran, Özgür Uğraş (2021-09-10)
CNNFOIL is a CNN-based machine learning tool that solves flow around the airfoil with a machine learning methodology. CNNFOIL, which is being developed by our research group, can predict flowfield around airfoils from different families at transonic regimes. We have improved the training process and accuracy of the CNNFOIL solver by implementing new loss functions. In this study, the effects of an L2 -based loss function, a physics-informed loss function based on continuity equation and a gradient differenc...
Citation Formats
A. Köksal and A. A. Alatan, “Effect of Annotation Errors on Drone Detection with YOLOv3,” 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34835.