Phosphate-activated high-calcium fly ash acid-base cements

2015-10-01
Mahyar, Mahdi
Erdoğan, Sinan Turhan
Some fly ashes are used in the concrete industry but some are deemed unsuitable owing to their chemical compositions. This study investigated the use of such a high-calcium fly ash containing large amounts of anhydrite, free lime, and calcite, to produce room-temperature acid-base cements by activation with phosphate sources. Orthophosphoric acid solutions and potassium dihydrogen phosphate were used as activators. Paste microstructures were studied using x-ray diffraction, scanning electron microscopy, isothermal calorimetry, and pH measurements. These findings were related to strength development up to 28 d. Room-temperature cured pastes activated with a 60% H3PO4 solution and a solution-to-powder ratio of 1.0 gave the highest 1-d strength of 15 MPa and 28-d strength of 22 MPa. Partial replacement of the ash with glass powder further increased the 28-d strength. Crystalline calcium phosphates, Brushite and Monetite, were among the products of the solution-activated pastes, as well as some amorphous phases. Potassium salt-activated pastes did not contain the calcium phosphate crystals and gave lower strengths. The ultimate pH of well-reacted mixtures were close to neutral.
CEMENT & CONCRETE COMPOSITES

Suggestions

Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder
Çelik, Kemal; Akgül, Çağla; Gursel, A. Petek; Mehta, P Kumar; Horvath, Arpad; Monteiro, Paulo JM (2015-02-01)
This paper reports the composition and properties of highly flowable self-consolidating concrete (SCC) mixtures made of high proportions of cement replacement materials such as fly ash and pulverized limestone instead of high dosage of a plasticizing agent or viscosity-modifying chemical admixtures. Self-consolidating concrete mixtures are being increasingly used for the construction of highly reinforced complex concrete elements and for massive concrete structures such as dams and thick foundation. In this...
Creep behaviour analysis of thin spray-on liners
Güner, Doğukan; Öztürk, Hasan; Department of Mining Engineering (2020)
Thin Spray-on Liner (TSL) is a relatively thin (2–5 mm) and fast-setting liner material used by spraying onto rock surfaces to support underground excavations. Areal support materials that are sprayed onto the rock, such as shotcrete or liners, are able to generate support resistance at small rock deformations and can prevent underground rockfalls from happening in the first place. However, where large ground convergence occurs, the more flexible TSLs may provide superior support over the full range of rock...
Mutual activation of blast furnace slag and a high-calcium fly ash rich in free lime and sulfates
Sahin, Murat; Mahyar, Mahdi; Erdoğan, Sinan Turhan (2016-11-15)
Alkaline activation of fly ash and blast furnace slag has gained interest due to a desire to avoid Portland cement in mixtures. Outstanding mechanical performance and durability is reported, but often when the activator dosage is high which can have various negative environmental impacts that can overshadow the carbon reduction benefit. This study investigates the use of a ground slag, and a high-lime fly ash, rich in free lime and sulfates, to activate each other and render mortars which don't incorporate ...
Moisture absorption of composites with interfacial storage
Güloğlu, Görkem Eğemen; Hamidi, Youssef K.; Altan, M. Cengiz (2020-07-01)
© 2020 Elsevier LtdThermosetting polymer composites are often exposed to wet and humid environments, leading to a considerable reduction in their thermo-mechanical properties. Hence, accurate description of the moisture absorption dynamics, including anomalous effects such as molecular bonding and interfacial storage of moisture, is particularly important. In this study, the hindered diffusion model is extended to include the moisture storage at the interface of impermeable fibers or inclusions within the c...
Recycling of Polymer Waste Using Different Techniques
Sivri, Seda; Sezgi, Naime Aslı; Dilek Hacıhabiboğlu, Çerağ; Department of Chemical Engineering (2023-1-26)
Polylactic acid (PLA) is the most widely known renewable biodegradable polymer due to its mass production, good processability, optical, mechanical, thermal, and barrier properties. Hence, the production rate of PLA increased gradually during the last decade. However, PLA is known to have slow degradation rate in soil and marine environments, leading to significant waste accumulation with widespread usage of the polymer. Thus, recycling of PLA waste will become a significant environmental concern in near fu...
Citation Formats
M. Mahyar and S. T. Erdoğan, “Phosphate-activated high-calcium fly ash acid-base cements,” CEMENT & CONCRETE COMPOSITES, pp. 96–103, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34987.