Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder
Date
2015-02-01
Author
Çelik, Kemal
Akgül, Çağla
Gursel, A. Petek
Mehta, P Kumar
Horvath, Arpad
Monteiro, Paulo JM
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
This paper reports the composition and properties of highly flowable self-consolidating concrete (SCC) mixtures made of high proportions of cement replacement materials such as fly ash and pulverized limestone instead of high dosage of a plasticizing agent or viscosity-modifying chemical admixtures. Self-consolidating concrete mixtures are being increasingly used for the construction of highly reinforced complex concrete elements and for massive concrete structures such as dams and thick foundation. In this study, by varying the proportion of portland cement (OPC), Class F-fly ash (F), and limestone powder (L), SCC mixtures with different strength values were produced, and the properties of both fresh and hardened concrete were determined. For a comprehensive analysis and quantification of emissions and global warming potential (GWP) from concrete production, life-cycle assessment (LCA) was employed. We find that high volume, up to 55% by weight replacement of OPC with F, or F and L produces highly workable concrete that has high 28-day and 365-day strength, and extremely high to very high resistance to chloride penetration along with low GWP for concrete production.
Subject Keywords
Self-consolidating concrete (SCC)
,
Fly ash
,
Emissions
,
Life-cycle assessment (LCA)
,
Limestone powder
,
Global warming potential (GWP)
,
Sustainability
URI
https://hdl.handle.net/11511/40172
Journal
CEMENT & CONCRETE COMPOSITES
DOI
https://doi.org/10.1016/j.cemconcomp.2014.11.003
Collections
Department of Civil Engineering, Article