Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Recycling of Polymer Waste Using Different Techniques
Download
Seda Sivri_PhD Thesis.pdf
Date
2023-1-26
Author
Sivri, Seda
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
Polylactic acid (PLA) is the most widely known renewable biodegradable polymer due to its mass production, good processability, optical, mechanical, thermal, and barrier properties. Hence, the production rate of PLA increased gradually during the last decade. However, PLA is known to have slow degradation rate in soil and marine environments, leading to significant waste accumulation with widespread usage of the polymer. Thus, recycling of PLA waste will become a significant environmental concern in near future unless the effective techniques emerge. Focusing on this problem, the degradation of PLA was performed with and without metal loaded silica aerogel catalysts using custom-designed pyrolysis system and high-pressure reaction system under different reaction parameters. The production of lactide isomers, lactic acid, propionic acid, acetaldehyde, carbon monoxide, carbon dioxide and hydrogen were achieved. The maximum lactide isomer yield was determined to be 49 wt.% at 225 °C, 480 min, 70 rpm under 50 ml/min argon flow in pyrolysis system, while 89 wt.% lactide isomer yield was achieved at 200 °C, 120 min, 70 rpm and 206 bar in high-pressure system. In addition, Al, Fe, and Mg loaded catalysts were found to be effective in the degradation of PLA. The highest lactide isomer yield was found to be 58 wt.% with SAUFe15 catalyst at 225 °C, 60 min, 70 rpm under 50 ml/min argon flow. These outputs show that supercritical carbon dioxide medium, mesoporous catalysts and pyrolysis technique are promising for the recycling of PLA with the aim of closed loop production of PLA.
Subject Keywords
Polylactic Acid
,
Degradation
,
Pyrolysis
,
Supercritical Carbon Dioxide
,
Mesoporous Catalysts
URI
https://hdl.handle.net/11511/102570
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Selective sulfate sorption from boric acid factory process liquor: Chitosan-bentonite biocomposite film synthesis as sorbent
Kaya, Fatih; Ozer, Ahmet (2022-09-01)
Chitosan is a natural polymer that is renewable, biocompatible, and biodegradable. Bentonite is a natural mineral with low environmental effects. For this reason, chitosan- bentonite biocomposite film was synthesized as a sorbent and its characterized by FT-IR, SEM, EDX, CHNS elemental analysis and thermal analysis techniques. The sorbent was utilized for selective sulfate (SO42  ) sorption from boric acid factory process liquor, because one of the most important problems in the boric acid productio...
Pyrolysis of Polyethylene over Aluminum-Incorporated MCM-41 Catalyst
Aydemir, Bugce; Sezgi, Naime Aslı (2016-01-01)
Aluminum-containing MCM-41 catalysts were synthesized in this study by impregnation of aluminum into hydrothermally synthesized MCM-41. Aluminum was loaded into the porous framework of silica with different Al/Si ratios, using aluminum isopropoxide as the aluminum source. These catalysts exhibited Type IV adsorption-desorption isotherms and had a pore diameter of 2.4nm. Aluminum species were coordinated tetra- and octahedrally in the structure of catalysts. Diffuse Reflectance Fourier Transform Infrared Spe...
Investigation of the Mechanical Properties of Al2O3 Reinforced Nickel Composite Coatings, Metal-Matrix Composites Innovations, Advances and Applications
Yılmaz, Olgun; Karakaya, İshak (null; 2018-03-15)
Addition of inert ceramic particles improves the mechanical and tribological properties of nickel coatings significantly. Two different surfactants; ammonium lignosulfonate (ALS) and sodium dodecyl sulfate (SDS), were used in a typical sulfamate nickel plating solution in varying concentrations to arrange the floatation and wetting conditions of Al<SUB>2</SUB>O<SUB>3</SUB> particles (~300 nm) in the electrolyte. In addition to the effect of surfactants, effects of current density and...
Hierarchical multi-component nanofiber separators for lithium polysulfide capture in lithium-sulfur batteries: an experimental and molecular modeling study
Zhu, Jiadeng; Yıldırım, Erol; Aly, Karim; Shen, Jialong; Chen, Chen; Lu, Yao; Jiang, Mengjin; Kim, David; Tonelli, Alan E.; Pasquinelli, Melissa A.; Bradford, Philip D.; Zhang, Xiangwu (2016-01-01)
Sulfur (S) has been considered as a promising cathode candidate for lithium batteries due to its high theoretical specific capacity and energy density. However, the low active material utilization, severe capacity fading, and short lifespan of the resultant lithium-sulfur (Li-S) batteries have greatly hindered their practicality. In this work, a multi-functional polyacrylonitrile/silica nanofiber membrane with an integral ultralight and thin multi-walled carbon nanotube sheet is presented and it provides a ...
Activated carbon-tungstophosphoric acid catalysts for the synthesis of tert-amyl ethyl ether (TAEE)
Obali, Zeynep; Doğu, Timur (2008-05-01)
Catalytic activities of bulk tungstophosphoric acid (HPW) and its supported forms on activated carbon were investigated in the vapor phase etherification reaction of isoamylene with ethanol in a continuous flow reactor. Tungstophosphoric acid (H3PW12O40 center dot 11H(2)O) was supported on activated carbon having a surface area of 796 m(2)/g, at two different loading levels (25% and 31%) by aqueous impregnation technique and the kinetic experiments were done in a temperature range between 353 and 370 K. Sup...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sivri, “Recycling of Polymer Waste Using Different Techniques,” Ph.D. - Doctoral Program, Middle East Technical University, 2023.