Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Integration of topological measures for eliminating non-specific interactions in protein interaction networks
Date
2009-05-28
Author
BAYIR, Murat Ali
GUNEY, Tacettin Dogacan
Can, Tolga
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
283
views
0
downloads
Cite This
High-throughput protein interaction assays aim to provide a comprehensive list of interactions that govern the biological processes in a cell. These large-scale sets of interactions, represented as protein-protein interaction networks, are often analyzed by computational methods for detailed biological interpretation. However, as a result of the tradeoff between speed and accuracy, the interactions reported by high-throughput techniques occasionally include non-specific (i.e., false-positive) interactions. Unfortunately, many computational methods are sensitive to noise in protein interaction networks; and therefore they are not able to make biologically accurate inferences.
Subject Keywords
Applied Mathematics
,
Discrete Mathematics and Combinatorics
URI
https://hdl.handle.net/11511/34989
Journal
DISCRETE APPLIED MATHEMATICS
DOI
https://doi.org/10.1016/j.dam.2008.06.034
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Pattern analysis for the prediction of fungal pro-peptide cleavage sites
Ozogur-Akyuz, S.; Shawe-Taylor, J.; Weber, Gerhard Wilhelm; Ögel, Zümrüt Begüm (Elsevier BV, 2009-05-28)
Support vector machines (SVMs) have many applications in investigating biological data from gene expression arrays to understanding EEG signals of sleep stages. In this paper, we have developed an application that will support the prediction of the pro-peptide cleavage site of fungal extracellular proteins which display mostly a monobasic or dibasic processing site. Many of the secretory proteins and peptides are synthesized as inactive precursors and they become active after post-translational processing. ...
Bayesian inference for the MAPK/ERK pathway by considering the dependency of the kinetic parameters
Purutçuoğlu Gazi, Vilda (Institute of Mathematical Statistics, 2008-01-01)
The MAPK/ERK pathway is one of the major signal transduction systems which regulates the cellular growth control of all eukaryotes like the cell proliferation and the apoptosis. Because of its importance in cellular lifecycle, it has been studied intensively, resulting in a number of qualitative descriptions of this regulatory mechanism. In this study we describe the MAPK/ERK pathway as an explicit set of reactions by combining different sources. Our reaction set takes into account the localization and diff...
Analysis of protein-protein interaction networks using random walks
Can, Tolga; Singh, Ambuj K. (2005-08-21)
Genome wide protein networks have become reality in recent years due to high throughput methods for detecting protein interactions. Recent studies show that a networked representation of proteins provides a more accurate model of biological systems and processes compared to conventional pair-wise analyses. Complementary to the availability of protein networks, various graph analysis techniques have been proposed to mine these networks for pathway discovery, function assignment, and prediction of complex mem...
Optimization of gene-environment networks in the presence of errors and uncertainty with Chebychev approximation
Weber, Gerhard Wilhelm; Taylan, P.; Alparslan-Gok, S. Z.; Oezoeguer-Akyuz, S.; Akteke-Ozturk, B. (Springer Science and Business Media LLC, 2008-12-01)
This mathematical contribution is addressed towards the wide interface of life and human sciences that exists between biological and environmental information. Like very few other disciplines only, the modeling and prediction of genetical data is requesting mathematics nowadays to deeply understand its foundations. This need is even forced by the rapid changes in a world of globalization. Such a study has to include aspects of stability and tractability; the still existing limitations of modern technology i...
Long-tailed graphical model and frequentist inference of the model parameters for biological networks
AĞRAZ, MELİH; Purutçuoğlu Gazi, Vilda (Informa UK Limited, 2020-03-12)
The biological organism is a complex structure regulated by interactions of genes and proteins. Various linear and nonlinear models can define activations of these interactions. In this study, we have aimed to improve the Gaussian graphical model (GGM), which is one of the well-known probabilistic and parametric models describing steady-state activations of biological systems, and its inference based on the graphical lasso, shortly Glasso, method. Because, GGM with Glasso can have low accuracy when the syst...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. A. BAYIR, T. D. GUNEY, and T. Can, “Integration of topological measures for eliminating non-specific interactions in protein interaction networks,”
DISCRETE APPLIED MATHEMATICS
, pp. 2416–2424, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34989.