Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Reactive Footstep Planning for a Planar Spring Mass Hopper
Download
index.pdf
Date
2009-10-15
Author
Arslan, Omur
Saranlı, Uluç
Morgul, Omer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
The main driving force behind research on legged robots has always been their potential for high performance locomotion on rough terrain and the outdoors. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments (e.g flat ground), or rely on kinematic planning at low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system against model uncertainty and environment noise. In this paper, we introduce a new method for dynamic, fully reactive footstep planning for a simplified planar spring-mass hopper, a frequently used model for running behaviors. Our approach is based on a careful characterization of the model dynamics and an associated deadbeat controller, used within a sequential composition framework. This yields a purely reactive controller with a very large, nearly global domain of attraction that requires no explicit replanning during execution. Finally, we use a simplified hopper in simulation to illustrate the performance of the planner under different rough terrain scenarios and show that it is extremely robust to both model uncertainty and measurement noise.
Subject Keywords
Springs
,
Robots
,
Noise robustness
,
Kinematics
,
Robust control
,
Vehicle dynamics
,
Morphology
,
Legged locomotion
,
Uncertainty
,
Working environment noise
URI
https://hdl.handle.net/11511/35026
DOI
https://doi.org/10.1109/iros.2009.5354354
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Reactive Planning and Control of Planar Spring-Mass Running on Rough Terrain
Arslan, Omur; Saranlı, Uluç (2012-06-01)
An important motivation for work on legged robots has always been their potential for high-performance locomotion on rough terrain. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments or rely on kinematic planning at low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system. In this paper, we introduce a new method for dynamic, fully reactive footstep planning for a pla...
Flexible multibody dynamic modeling and simulation of rhex hexapod robot with half circular compliant legs
Oral, Gökhan; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2008)
The focus of interest in this study is the RHex robot, which is a hexapod robot that is capable of locomotion over rugged, fractured terrain through statically and dynamically stable gaits while stability of locomotion is preserved. RHex is primarily a research platform that is based on over five years of previous research. The purpose of the study is to build a virtual prototype of RHex robot in order to simulate different behavior without manufacturing expensive prototypes. The virtual prototype is modele...
Single and multi-frame motion deblurring for legged robots: characterization using a novel fd-aroc performance metric and a comprehensive motion-blur dataset
Gültekin, Gökhan Koray; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2016)
Dexterous legged robots are agile platforms that can move on variable terrain at high speeds. The locomotion of these legged platforms causes oscillations of the robot body which become more severe depending on the surface and locomotion speed. Camera sensors mounted on such platforms experience the same disturbances, hence resulting in motion blur. This is a corruption of the image and results in loss of information which in turn causes degradation or loss of important image features. Most of the studies i...
Control of Planar Spring-Mass Running Through Virtual Tuning of Radial Leg Damping
Secer, Gorkem; Saranlı, Uluç (Institute of Electrical and Electronics Engineers (IEEE), 2018-10-01)
Existing research on dynamically capable legged robots, particularly those based on spring-mass models, generally considers improving in isolation either the stability and control accuracy on the rough terrain, or the energetic efficiency in steady state. In this paper, we propose a new method to address both, based on the hierarchical embedding of a simple spring-loaded inverted pendulum (SLIP) template model with a tunable radial damping coefficient into a realistic leg structure with series-elastic actua...
Control of quadruped walking behavior through an embedding of spring loaded inverted pendulum template
Yılmaz, Mert Kaan; Saranlı, Uluç; Department of Computer Engineering (2022-8)
Legged robots require complex dynamical behaviours in order to achieve stable, sustainable and efficient locomotion. Due to their mobile nature, they can neither afford to provide extensive computational power, nor use anything but the most energy efficient structural designs and algorithms to achieve stability and speed. Consequently, simple and efficient ways to solve the complex set of problems is one of the key points of focus in legged robot locomotion research. This thesis offers a novel method that u...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Arslan, U. Saranlı, and O. Morgul, “Reactive Footstep Planning for a Planar Spring Mass Hopper,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35026.