Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An iterative adaptive multi-modal stereo-vision method using mutual information
Date
2015-01-01
Author
Yaman, Mustafa
Kalkan, Sinan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
19
views
0
downloads
We propose a method for computing disparity maps from a multi-modal stereo-vision system composed of an infrared-visible camera pair. The method uses mutual information (MI) as the basic similarity measure where a segment-based adaptive windowing mechanism is proposed along with a novel MI computation surface with joint prior probabilities incorporated. The computed cost confidences are aggregated using a novel adaptive cost aggregation method, and the resultant minimum cost disparities in segments are plane-fitted in their respective segments which are iteratively refined by merging and splitting segments reducing dependency to initial segmentation. Finally, the estimated disparities are iteratively refined by repeating all the steps. On an artificially-modified version of the Middlebury dataset and a Kinect dataset that we created in this study, we show that (i) our proposal improves the quality of existing MI formulation, and (ii) our method can provide depth comparable to the quality of Kinect depth data.
Subject Keywords
Multi-modal stereo-vision
,
Mutual information
,
Adaptive windowing
,
Adaptive cost aggregation
,
Iterative stereo
,
Plane fitting
,
RGB-D
,
Middleburry dataset
URI
https://hdl.handle.net/11511/35067
Journal
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION
DOI
https://doi.org/10.1016/j.jvcir.2014.11.010
Collections
Department of Basic English, Article