Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument

Download
2016-12-01
Akhmet, Marat
Kirane, Mokhtar
We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.
NEURAL COMPUTING & APPLICATIONS

Suggestions

Almost periodic solutions of second order neutral differential equations with functional response on piecewise constant argument
Akhmet, Marat (2013-01-01)
© 2013 L & H Scientific Publishing, LLC.We consider second order functional differential equations with generalized piecewise constant argument. Conditions for existence, uniqueness and stability of Bohr almost periodic solutions are defined. Appropriate examples which illustrate the results are provided.
Global exponential stability of neural networks with non-smooth and impact activations
Akhmet, Marat (2012-10-01)
In this paper, we consider a model of impulsive recurrent neural networks with piecewise constant argument. The dynamics are presented by differential equations with discontinuities such as impulses at fixed moments and piecewise constant argument of generalized type. Sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are obtained. By employing Green's function we derive new result of existence of the periodic solution. The global exponential s...
Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays
Sayli, Mustafa; YILMAZ, ENES (2015-08-01)
In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence...
Exponential stability of periodic solutions of recurrent neural networks with functional dependence on piecewise constant argument
Akhmet, Marat; Cengiz, Nur (null; 2015-08-25)
Akhmet [1] generalized differential equations with piecewise constant argument by taking any piecewise constant functions as arguments, and recently he introduced functional dependence on piecewise constant argument [2]. These equations play an important role in applications such as neural networks [3]. In this study, we develope a model of recurrent neural network with functional dependence on piecewise constant argument of generalized type given by x 0 (t) = −Ax (t) + Ex (γ (t)) + Bh (xt) + Cg xγ(t) + D...
QUASILINEAR RETARDED DIFFERENTIAL EQUATIONS WITH FUNCTIONAL DEPENDENCE ON PIECEWISE CONSTANT ARGUMENT
Akhmet, Marat (2014-03-01)
We introduce a new class of differential equations, retarded differential equations with functional dependence on piecewise constant argument, RFDEPCA, and focus on quasilinear systems. Formulation of the initial value problem, bounded solutions, periodic and almost periodic solutions, their stability are under investigation. Illustrating examples are provided.
Citation Formats
M. Akhmet and M. Kirane, “Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument,” NEURAL COMPUTING & APPLICATIONS, pp. 2483–2495, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35071.