Global exponential stability of neural networks with non-smooth and impact activations

2012-10-01
In this paper, we consider a model of impulsive recurrent neural networks with piecewise constant argument. The dynamics are presented by differential equations with discontinuities such as impulses at fixed moments and piecewise constant argument of generalized type. Sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are obtained. By employing Green's function we derive new result of existence of the periodic solution. The global exponential stability of the solution is investigated. Examples with numerical simulations are given to validate the theoretical results.
NEURAL NETWORKS

Suggestions

Impulsive Hopfield-type neural network system with piecewise constant argument
Akhmet, Marat; Yılmaz, Elanur (2010-08-01)
In this paper we introduce an impulsive Hopfield-type neural network system with piecewise constant argument of generalized type. Sufficient conditions for the existence of the unique equilibrium are obtained. Existence and uniqueness of solutions of such systems are established. Stability criterion based on linear approximation is proposed. Some sufficient conditions for the existence and stability of periodic solutions are derived. An example with numerical simulations is given to illustrate our results.
Exponential stability of periodic solutions of recurrent neural networks with functional dependence on piecewise constant argument
Akhmet, Marat; Cengiz, Nur (null; 2015-08-25)
Akhmet [1] generalized differential equations with piecewise constant argument by taking any piecewise constant functions as arguments, and recently he introduced functional dependence on piecewise constant argument [2]. These equations play an important role in applications such as neural networks [3]. In this study, we develope a model of recurrent neural network with functional dependence on piecewise constant argument of generalized type given by x 0 (t) = −Ax (t) + Ex (γ (t)) + Bh (xt) + Cg xγ(t) + D...
Stability analysis of recurrent neural networks with piecewise constant argument of generalized type
Akhmet, Marat; Yılmaz, Elanur (2010-09-01)
In this paper, we apply the method of Lyapunov functions for differential equations with piecewise constant argument of generalized type to a model of recurrent neural networks (RNNs). The model involves both advanced and delayed arguments. Sufficient conditions are obtained for global exponential stability of the equilibrium point. Examples with numerical simulations are presented to illustrate the results.
Almost periodic solutions of retarded SICNNs with functional response on piecewise constant argument
Akhmet, Marat; Kirane, Mokhtar (2016-12-01)
We consider a new model for shunting inhibitory cellular neural networks, retarded functional differential equations with piecewise constant argument. The existence and exponential stability of almost periodic solutions are investigated. An illustrative example is provided.
Periodic solution for state-dependent impulsive shunting inhibitory CNNs with time-varying delays
Sayli, Mustafa; YILMAZ, ENES (2015-08-01)
In this paper, we consider existence and global exponential stability of periodic solution for state-dependent impulsive shunting inhibitory cellular neural networks with time-varying delays. By means of B-equivalence method, we reduce these state-dependent impulsive neural networks system to an equivalent fix time impulsive neural networks system. Further, by using Mawhin's continuation theorem of coincide degree theory and employing a suitable Lyapunov function some new sufficient conditions for existence...
Citation Formats
M. Akhmet, “Global exponential stability of neural networks with non-smooth and impact activations,” NEURAL NETWORKS, pp. 18–27, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35590.