Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Experimental investigation of shaft transducerless speed and position control of ac induction and interior permanent magnet motors
Date
2010-01-01
Author
Goksu, Omer
Hava, Ahmet Masum
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
In order to drive AC motors with high efficiency and high motion performance, and to provide accurate speed/position control, motor shaft speed and/or position feedback is required. For this purpose, usually transducers (encoder, tachogenerator, resolver, etc.) are installed on the shaft. However, transducers are not preferred in most of the applications since they increase the cost and decrease the reliability of the drive due to their failure prone structure and connections. In such applications, the speed and/or position information of the motor is obtained by estimation methods without using shaft transducers. In this work, motor types and speed/position estimation methods will be surveyed, appropriate estimation methods will be determined based on the motor type (induction or interior permanent magnet synchronous) and the application requirement (speed and/or position control requirement). High frequency signal injection, speed adaptive flux observer, open loop integration based flux observer methods, and combination of them in a hybrid algorithm will be investigated. By implementing these methods, the experimental performance of the shaft transducerless speed and/or position controlled vector control based induction and interior permanent magnet synchronous motors will be presented. The study helps the motion control engineers select the suitable motor and implement the appropriate speed/position estimation algorithm for a given application.
Subject Keywords
IPM Motor
,
Induction motor
,
Sensorless
,
Vector control
,
Speed and position control
,
High frequency signal injection
,
Fux observer
,
Inverter
,
Saliency
,
Adaptive control
URI
https://hdl.handle.net/11511/35125
Journal
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES
DOI
https://doi.org/10.3906/elk-0906-55
Collections
Department of Electrical and Electronics Engineering, Article