Nonlinear Vibrations of a Flexible L-shaped Beam Using Differential Quadrature Method

2015-02-05
Samandari, Hamed
Ciğeroğlu, Ender
Flexible L-shaped beams are integrated sub-components of several navy and space structures where overall response of the system is affected by these structures. Hence, an understanding of the dynamical properties of these structural systems is required for their design and control. Recent studies show that the dynamic response of beam like structures undergoing large deformation is nonlinear in nature where phenomenon such as jump and chaotic response can be detected. In this study, nonlinear free vibrations of L-shaped beams are studied using a continuous beam model with a focus on the internal resonance of these structures. Nonlinearity considered is due to large deflection of the beams (geometric nonlinearity). Hamilton principle and Euler Bernoulli beam theory are used to obtain the nonlinear equations of motion. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of ordinary differential equations of motion in time domain. Harmonic balance method is used to convert the ordinary differential equations of motion into a set of nonlinear algebraic equations which is solved numerically. Numerical simulations, based on the mathematical model, are presented to analyze the nonlinear responses of the L-shape beam structure.

Suggestions

Nonlinear vibration analysis of L-shaped beams and their use in vibration reduction
Ekici, Yiğitcan; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2022-9)
In this thesis, nonlinear vibration analysis of both fixed L-shaped beam and L-shaped beam attached to a single degree of freedom (SDOF) system is performed for several cases with different structural parameters to observe the effect of these parameters. Then these beams are proposed to reduce the vibration amplitudes of certain structures, and the nonlinear effects on the dynamic responses of these structures are investigated. The nonlinear dynamic model of the L-shaped beam is obtained by using Euler-Bern...
Vibration Analysis of a Cracked Beam on an Elastic Foundation
Batihan, Ali Cagri; Kadıoğlu, Fevzi Suat (2016-06-01)
The transverse vibrations of cracked beams with rectangular cross sections resting on Pasternak and generalized elastic foundations are considered. Both the Euler-Bernoulli (EB) and Timoshenko beam (TB) theories are used. The open edge crack is represented as a rotational spring whose compliance is obtained by the fracture mechanics. By applying the compatibility conditions between the beam segments at the crack location and the boundary conditions, the characteristic equations are derived, from which the n...
Nonlinear Vibrations of a Beam with a Breathing Edge Crack Using Multiple Trial Functions
Batihan, Ali C.; Ciğeroğlu, Ender (2016-01-28)
In this paper, a beam like structure with a single edge crack is modeled and analyzed in order to study the nonlinear effects of breathing crack on transverse vibrations of a beam. In literature, edge cracks are generally modeled as open cracks, in which the beam is separated into two pieces at the crack location and these pieces are connected to each other with a rotational spring to represent the effect of crack. The open edge crack model is a widely used assumption; however, it does not consider the nonl...
Nonlinear Vibrations of a Functionally Graded Material Microbeam with Geometric Nonlinearity
Uz, Canan; Ciğeroğlu, Ender (2017-02-02)
In this paper, nonlinear vibration analysis of micro scale functionally graded material (FGM) beams with geometric nonlinearity due to large deflection is studied using modified couple stress theory (MCST). MCST is a nonlocal elasticity theory which includes a material length scale parameter since the size of an atomic microstructure becomes comparable to the length of the microbeam. Equations of motion of the micro scale FGM beam are obtained by using Hamilton's principle. Nonlinear free vibrations of the ...
Experimental validation of pseudo receptance difference (PRD) method for nonlinear model updating
Canbaloglu, Guvenc; Özgüven, Hasan Nevzat (Springer, 2015-02-05)
In real life applications most of the structures have nonlinearities, which restrict us applying model updating techniques available for linear structures. Well-established FRF based model updating methods would easily be extended to a nonlinear system if the FRFs of the underlying linear system (linear FRFs) could be experimentally measured. When frictional type of nonlinearity co-exists with other types of nonlinearities, it is not possible to obtain linear FRFs experimentally by using low level forcing. ...
Citation Formats
H. Samandari and E. Ciğeroğlu, “Nonlinear Vibrations of a Flexible L-shaped Beam Using Differential Quadrature Method,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35188.