Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Nonlinear Vibrations of a Flexible L-shaped Beam Using Differential Quadrature Method
Date
2015-02-05
Author
Samandari, Hamed
Ciğeroğlu, Ender
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Flexible L-shaped beams are integrated sub-components of several navy and space structures where overall response of the system is affected by these structures. Hence, an understanding of the dynamical properties of these structural systems is required for their design and control. Recent studies show that the dynamic response of beam like structures undergoing large deformation is nonlinear in nature where phenomenon such as jump and chaotic response can be detected. In this study, nonlinear free vibrations of L-shaped beams are studied using a continuous beam model with a focus on the internal resonance of these structures. Nonlinearity considered is due to large deflection of the beams (geometric nonlinearity). Hamilton principle and Euler Bernoulli beam theory are used to obtain the nonlinear equations of motion. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of ordinary differential equations of motion in time domain. Harmonic balance method is used to convert the ordinary differential equations of motion into a set of nonlinear algebraic equations which is solved numerically. Numerical simulations, based on the mathematical model, are presented to analyze the nonlinear responses of the L-shape beam structure.
Subject Keywords
Nonlinear vibrations
,
L-shaped beam
,
Differential quadrature method
,
Geometric nonlinearity
,
Euler-Bernoulli beam theory
URI
https://hdl.handle.net/11511/35188
DOI
https://doi.org/10.1007/978-3-319-15221-9_12
Collections
Department of Mechanical Engineering, Conference / Seminar