Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Case study: Planar kinematics of dragline for efficient machine control
Date
2009-03-24
Author
FRIMPONG, Samuel
Demirel, Nuray
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Overburden excavation is an integral component of the surface mine production chain. In large mines, the walking dragline is a dominant strip mining machine. Dragline performance depends on the operating speed, the bucket payload, and the machine availability, which could be negatively impacted by the actions taken to increase the machine productivity. In this study, the writers develop the kinematics and dynamic modeling of a dragline front-end assembly using the vector loop and simultaneous constraint methods. Based on the results of the kinematics and dynamic simulations, stress modeling and analysis are performed. Detailed analysis of the simulation results show that the angular accelerations of the drag and hoist ropes are close to zero, which indicate very smooth simulated operations. The respective maximum drag and hoist forces are 100 and 75kN, which also indicate a dominant drag operation. The maximum stress loading of the boom’s Arm-1 (166.5MPa) and Arm-2 (159.9MPa) are less than the boom yield stress at 305MPa. These results indicate machine health and longevity within the simulated conditions
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Civil and Structural Engineering
,
Aerospace Engineering
URI
https://hdl.handle.net/11511/35271
Journal
Journal of Aerospace Engineering
DOI
https://doi.org/10.1061/(asce)0893-1321(2009)22:2(112)
Collections
Department of Mining Engineering, Article