Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Case study: Planar kinematics of dragline for efficient machine control
Date
2009-03-24
Author
FRIMPONG, Samuel
Demirel, Nuray
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Overburden excavation is an integral component of the surface mine production chain. In large mines, the walking dragline is a dominant strip mining machine. Dragline performance depends on the operating speed, the bucket payload, and the machine availability, which could be negatively impacted by the actions taken to increase the machine productivity. In this study, the writers develop the kinematics and dynamic modeling of a dragline front-end assembly using the vector loop and simultaneous constraint methods. Based on the results of the kinematics and dynamic simulations, stress modeling and analysis are performed. Detailed analysis of the simulation results show that the angular accelerations of the drag and hoist ropes are close to zero, which indicate very smooth simulated operations. The respective maximum drag and hoist forces are 100 and 75kN, which also indicate a dominant drag operation. The maximum stress loading of the boom’s Arm-1 (166.5MPa) and Arm-2 (159.9MPa) are less than the boom yield stress at 305MPa. These results indicate machine health and longevity within the simulated conditions
Subject Keywords
Mechanical Engineering
,
General Materials Science
,
Civil and Structural Engineering
,
Aerospace Engineering
URI
https://hdl.handle.net/11511/35271
Journal
Journal of Aerospace Engineering
DOI
https://doi.org/10.1061/(asce)0893-1321(2009)22:2(112)
Collections
Department of Mining Engineering, Article
Suggestions
OpenMETU
Core
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
Planar kinematics of dragline digging for efficient machine control
Demirel, Nuray (null; 2006-03-29)
Overburden excavation is an integral component of the surface mine production chain. The walking dragline is the most economic production equipment for overburden excavation in strip mining. Draglines are capital intensive, and thus, investments in multiple units severely impact the economic viability of projects. The use of few dragline units results in highly concentrated production focus, which must be efficiently managed to derive the potential economic benefits. Efficient use of draglines requires a th...
Nonlinear structural modification and nonlinear coupling
Kalaycioglu, Taner; Özgüven, Hasan Nevzat (Elsevier BV, 2014-06-03)
Structural modification methods were proved to be very useful for large structures, especially when modification is local. Although there may be inherent nonlinearities in a structural system in various forms such as clearances, friction and cubic stiffness, most of the structural modification methods are for linear systems. The method proposed in this work is a structural modification/coupling method developed previously, and extended to systems with nonlinear modification and coupling. The method is most ...
Isotropic-Kinematic Cyclic Hardening Characteristics of Plate Steels
Shakeri, Ashkan (Springer Science and Business Media LLC, 2017-03-01)
Cyclic hardening of metals is considered as one of the most important features that affects extremely the hysteresis behavior of steel structures. One approach to study this characteristic is dividing it into two components, including isotropic hardening and kinematic hardening, and defining any of these components for any type of metals by calibrated data obtained from experiments. However, the lack of these calibrated data on metals, restricts this approach. Therefore, in this paper the isotropic and kine...
Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile
ARSLAN, ONUR; Dağ, Serkan (Elsevier BV, 2018-01-01)
Singular integral equation (SIE) and finite element methods are developed for sliding contact analysis of a finite thickness orthotropic graded coating, which is perfectly bonded to an isotropic substrate. Orthotropic stiffness coefficients of the coating vary exponentially through the coating thickness. The coating is assumed to be loaded by a frictional rigid punch of an arbitrary profile. In the SIE formulation, governing partial differential equations are derived in accordance with the theory of plane e...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. FRIMPONG and N. Demirel, “Case study: Planar kinematics of dragline for efficient machine control,”
Journal of Aerospace Engineering
, pp. 112–122, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35271.