Test method for determining the shear modulus of elastomeric bearings

The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires a compression test machine to apply shear to the full-size bearing. The results from the inclined compression test show good correlation with results from an independent full-scale test setup. To develop reliable test procedures various test parameters were evaluated such as testing speed, platen surface conditions, and specimen dimensions. The test results show that the inclined compression method is a practical alternative to more traditional test methods. The new method works very well on bearings reinforced with steel laminates, but plain bearings require cold bonding to attachment plates in order to obtain reliable shear moduli.


Analysis of the flexural strength of prestressed concrete flanged sections
Baran, Eray; French, Catherine (Precast/Prestressed Concrete Institute, 2005-01-01)
Inconsistencies in the sectional response of prestressed concrete flanged sections predicted by the AASHTO LRFD and AASHTO Standard Specifications, including the maximum reinforcement limits, may arise due to different interpretations of the equivalent rectangular compressive stress block idealization. Strain compatibility analyses with nonlinear material properties were performed for a variety of non-rectangular prestressed concrete sections to identify the inconsistencies between the two specifications. R...
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Assessment of improved nonlinear static procedures in FEMA-440
Akkar, Dede Sinan; Metin, Ash (American Society of Civil Engineers (ASCE), 2007-09-01)
Nonlinear static procedures (NSPs) presented in the FEMA-440 document are evaluated for nondegrading three- to nine-story reinforced concrete moment-resisting frame systems. Evaluations are based on peak single-degree-of-freedom displacement, peak roof, and interstory drifts estimations. A total of 78 soil site records and 24 buildings with fundamental periods varying between 0.3 s-1.3 s are used in 2,832 linear and nonlinear response-history analyses to derive the descriptive statistics. The moment magnitu...
Experimental Determination of Resistance Characteristics of Support Details Used in Prestressed Concrete Bridge Girders
Baran, Eray; French, Catherine; Schultz, Arturo (American Society of Civil Engineers (ASCE), 2009-09-01)
Static load tests were performed on support details used at the ends of prestressed concrete pedestrian bridge girders to determine the resistance characteristics of girder supports in the direction perpendicular to the longitudinal axis of the girders. The specimens tested represent support details that have also been widely used in prestressed concrete highway bridges in Minnesota and in other states. Two specimens, one representing the free-end detail and one representing the restrained-end detail were s...
Contact mechanics problem between an orthotropic graded coating and a rigid punch of an arbitrary profile
ARSLAN, ONUR; Dağ, Serkan (Elsevier BV, 2018-01-01)
Singular integral equation (SIE) and finite element methods are developed for sliding contact analysis of a finite thickness orthotropic graded coating, which is perfectly bonded to an isotropic substrate. Orthotropic stiffness coefficients of the coating vary exponentially through the coating thickness. The coating is assumed to be loaded by a frictional rigid punch of an arbitrary profile. In the SIE formulation, governing partial differential equations are derived in accordance with the theory of plane e...
Citation Formats
C. Topkaya, “Test method for determining the shear modulus of elastomeric bearings,” JOURNAL OF STRUCTURAL ENGINEERING-ASCE, pp. 797–805, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39124.