Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Simple and complex behavior learning using behavior hidden Markov model and CobART
Date
2013-03-01
Author
Seyhan, Seyit Sabri
Alpaslan, Ferda Nur
Yavaş, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
322
views
0
downloads
Cite This
This paper proposes behavior learning and generation models for simple and complex behaviors of robots using unsupervised learning methods. While the simple behaviors are modeled by simple-behavior learning model (SBLM), complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models include behavior categorization, behavior modeling, and behavior generation phases. In the behavior categorization phase, sensory data are categorized using correlation based adaptive resonance theory (CobART) network that generates motion primitives corresponding to robot's base abilities. In the behavior modeling phase, a modified version of hidden Markov model (HMM), is called Behavior-HMM, is used to model the relationships among the motion primitives in a finite state stochastic network. At the same time, a motion generator which is an artificial neural network (ANN) is trained for each motion primitive to learn essential robot motor commands. In the behavior generation phase, a motion primitive sequence that can perform the desired task is generated according to the previously learned Behavior-HMMs at the higher level. Then, in the lower level, these motion primitives are executed by the motion generator which is specifically trained for the corresponding motion primitive. The transitions between the motion primitives are done according to observed sensory data and probabilistic weights assigned to each transition during the learning phase. The proposed models are not constructed for one specific behavior, but are intended to be bases for all behaviors. The behavior learning capabilities of the model is extended by integrating previously learned behaviors hierarchically which is referred as CBLM. Hence, new behaviors can take advantage of already discovered behaviors. Performed experiments on a robot simulator show that simple and complex-behavior learning models can generate requested behaviors effectively.
Subject Keywords
Robot behavior learning
,
Hidden Markov model
,
Artificial neural network
,
CobART
URI
https://hdl.handle.net/11511/35280
https://www.sciencedirect.com/science/article/abs/pii/S0925231212007631
Journal
NEUROCOMPUTING
DOI
https://doi.org/10.1016/j.neucom.2012.09.013
Collections
Department of Computer Engineering, Article
Suggestions
OpenMETU
Core
Simple and complex behavior learning using behavior hidden Markov Model and CobART
Seyhan, Seyit Sabri; Alpaslan, Ferda Nur; Department of Computer Engineering (2013)
In this thesis, behavior learning and generation models are proposed for simple and complex behaviors of robots using unsupervised learning methods. Simple behaviors are modeled by simple-behavior learning model (SBLM) and complex behaviors are modeled by complex-behavior learning model (CBLM) which uses previously learned simple or complex behaviors. Both models have common phases named behavior categorization, behavior modeling, and behavior generation. Sensory data are categorized using correlation based...
Mobile Robot Heading Adjustment Using Radial Basis Function Neural Networks Controller and Reinforcement Learning
BAYAR, GÖKHAN; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (2008-10-28)
This paper proposes radial basis function neural networks approach to the Solution of a mobile robot heading adjustment using reinforcement learning. In order to control the heading of the mobile robot, the neural networks control system have been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of strength. It has been achieved that neural networks system can learn the relationship between the desired directional heading and the error posi...
Control of a differentially driven mobile robot using radial basis function based neural networks
Bayar, Gökhan; Konukseven, Erhan İlhan; Buǧra Koku, A. (2008-12-01)
This paper proposes the use of radial basis function neural networks approach to the solution of a mobile robot orientation adjustment using reinforcement learning. In order to control the orientation of the mobile robot, a neural network control system has been constructed and implemented. Neural controller has been charged to enhance the control system by adding some degrees of award. Making use of the potential of neural networks to learn the relationships, the desired reference orientation and the error...
Hierarchical behavior categorization using correlation based adaptive resonance theory
Yavaş, Mustafa; Alpaslan, Ferda Nur (2012-02-01)
This paper introduces a new model for robot behavior categorization. Correlation based adaptive resonance theory (CobART) networks are integrated hierarchically in order to develop an adequate categorization, and to elicit various behaviors performed by the robot. The proposed model is developed by adding a second layer CobART network which receives first layer CobART network categories as an input, and back-propagates the matching information to the first layer networks. The first layer CobART networks cat...
Towards an on-line neural conditioning model for mobile robots
Şahin, Erol (2001-01-01)
This paper presents a neural conditioning model for on-line learning of behaviors on mobile robots. The model is based on Grossberg's neural model of conditioning as recently implemented by Chang and Gaudiano. It attempts to tackle some of the limitations of the original model by (1) using a temporal difference of the reinforcement to drive learning, (2) adding eligibility trace mechanisms to dissociate behavior generation from learning, (3) automatically categorizing sensor readings and (4) bootstrapping t...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. S. Seyhan, F. N. Alpaslan, and M. Yavaş, “Simple and complex behavior learning using behavior hidden Markov model and CobART,”
NEUROCOMPUTING
, pp. 121–131, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35280.