Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analysis of Airborne LiDAR Point Clouds With Spectral Graph Filtering
Download
index.pdf
Date
2018-08-01
Author
Bayram, Eda
Frossard, Pascal
Vural, Elif
Alatan, Abdullah Aydın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
249
views
0
downloads
Cite This
Separation of ground and nonground measurements is an essential task in the analysis of light detection and ranging (LiDAR) point clouds; however, it is challenge to implement a LiDAR filtering algorithm that integrates the mathematical definition of various landforms. In this letter, we propose a novel LiDAR filtering algorithm that adapts to the irregular structure and 3-D geometry of LiDAR point clouds. We exploit weighted graph representations to analyze the 3-D point cloud on its original domain. Then, we consider airborne LiDAR data as an irregular elevation signal residing on graph vertices. Based on a spectral graph approach, we introduce a new filtering algorithm that distinguishes ground and nonground points in terms of their spectral characteristics. Our complete filtering framework consists of outlier removal, iterative graph signal filtering, and erosion steps. Experimental results indicate that the proposed framework achieves a good accuracy on the scenes with data gaps and classifies the nonground points on bridges and complex shapes satisfactorily, while those are usually not handled well by the state-of-the-art filtering methods.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Electrical and Electronic Engineering
,
Airborne laser scanning
,
Graph signal processing
,
Light detection and ranging (LiDAR) filtering
,
Spectral graph filtering
,
Unorganized 3-D point cloud
URI
https://hdl.handle.net/11511/35378
Journal
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
DOI
https://doi.org/10.1109/lgrs.2018.2834626
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
A Graph Signal Filtering Based Approach for Detection of Different Edge Typeson Airborne LiDAR Data
Bayram, Eda; Vural, Elif; Alatan, Abdullah Aydın (2017-09-12)
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the d...
A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density
Unlusoy, Deniz; Süzen, Mehmet Lütfi (Elsevier BV, 2020-01-01)
In this study, a new method for the objective and accurate estimation of the joint roughness coefficient (JRC) of surface profiles, which are extracted from terrestrial laser scanner point clouds, is proposed. The requirements of objectivity, accuracy, reliability, and suitability for automatic analysis have been the basic criteria in assessing the performance of the procedure for JRC estimation. The procedure to estimate the JRC value of a sample profile is based on a similarity measure, between the third-...
Investigation of Terrestrial Laser Scanning Reflectance Intensity and RGB Distributions to Assist Construction Material Identification
Hassan, Muhammad Usman; Akçamete Güngör, Aslı; Akgül, Çağla (2017-07-07)
t: Terrestrial Laser Scanning (TLS) allows collection of dense 3D point cloud data that captures a structure's as-is conditions. The geometric information from the collected data could be used to generate a 3D-model of the structure. However, the generated model usually lacks functional information - a basic requirement for a semantically rich information model. Some of the functional information (such as cost, mechanical and thermal performance) could be derived if the material used in a particular geometr...
Identification of electromagnetic scattering mechanisms by two dimensional windowed fourier transform approach
Germeç, K. Egemen; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2004)
In this thesis, it is demonstrated that the two-dimensional Windowed Fourier Transform (WFT) can be effectively used to analyze the local spectral characteristics of electromagnetic scattering signals in the two-dimensional spatial frequency domain. The WFT is the extension of the Short Time Fourier Transform (STFT), which was originally derived to analyze the local spectral characteristics of one dimensional time functions. Since the WFT focuses on the local spectral behavior of the scattered field, the si...
Modelling of X-Band electromagnetic wave propagation
Pelgur, Ali; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2007)
Calculation of electromagnetic wave propagation over irregular terrain is an important problem in many applications such as coverage calculations for radars or communication links. Many different approaches to this problem may be found in the literature. One of the most commonly used methods to solve electromagnetic boundary value problems is the Method of Moments (MoM). However, especially at high frequencies, the very large number of unknows required in the MoM formulation, limits the applicability of thi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Bayram, P. Frossard, E. Vural, and A. A. Alatan, “Analysis of Airborne LiDAR Point Clouds With Spectral Graph Filtering,”
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
, pp. 1284–1288, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35378.