Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density
Date
2020-01-01
Author
Unlusoy, Deniz
Süzen, Mehmet Lütfi
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
284
views
0
downloads
Cite This
In this study, a new method for the objective and accurate estimation of the joint roughness coefficient (JRC) of surface profiles, which are extracted from terrestrial laser scanner point clouds, is proposed. The requirements of objectivity, accuracy, reliability, and suitability for automatic analysis have been the basic criteria in assessing the performance of the procedure for JRC estimation. The procedure to estimate the JRC value of a sample profile is based on a similarity measure, between the third-order polynomial function fits to the power spectral density in the spatial frequency domain of the sample surface profile and Barton's reference profiles. The procedure is tested on the one hundred and two digitized surface profiles found in the literature. Normal probability density distribution of estimation errors of the results show that the JRC estimation by the proposed method is more accurate and precise compared to the results from the three versions of the well-known and commonly used Z(2) method.
Subject Keywords
Geotechnical Engineering and Engineering Geology
URI
https://hdl.handle.net/11511/42108
Journal
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
DOI
https://doi.org/10.1016/j.ijrmms.2019.104156
Collections
Department of Geological Engineering, Article
Suggestions
OpenMETU
Core
Experimental evaluation of geomembrane/geotextile interface as base isolating system
Kalpakci, V.; Bonab, A. T.; Özkan, M. Yener; Gülerce, Zeynep (Thomas Telford Ltd., 2018-02-01)
The objective of this study is to evaluate the effect of the geomembrane/geotextile interface on the seismic response of small-to-moderate height structures. Three building models with first-mode natural frequencies changing between 2-4 Hz (representing two, three and four storey structures) were tested with and without the addition of geomembrane/geotextile interface using the shaking table test setup by employing harmonic and modified/ scaled ground motions. Experimental results showed that the geomembran...
Evaluation of displacement coefficient method for seismically retrofitted buildings with various ductility capacities
Dicleli, Murat (Wiley, 2014-07-25)
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel-brace-link system to represent those with good ductility capacity and then retrofitted wit...
An empirical method for design of grouted bolts in rock tunnels based on the Geological Strength Index (GSI)
Osgoui, Reza R.; Unal, Erdal (Elsevier BV, 2009-08-14)
The procedure presented in this paper has been developed for the design of grouted rock bolts in rock tunnels during preliminary design stage. The proposed approach provides a step-by-step procedure to set up a series of practical guidelines for optimum pattern of rock bolting in a variety of rock mass qualities. For this purpose, a new formula for the estimation of the rock load (support pressure) is recommended. Due to its wide-spread acceptance in the field of rock engineering, the Geological Strength In...
A New Isotropic Specimen Preparation Method from Slurry for both Saturated and Unsaturated Triaxial Testing of a Low-Plasticity Silt
Ahmadi-Naghadeh, Reza; Toker, Nabi Kartal (ASTM International, 2019-07-01)
A new procedure for the preparation of low-plasticity silt specimens that are isotropically reconstituted from slurry is developed for use in both saturated and unsaturated soil testing. Spatial variations of the water content and grain size distribution were examined to confirm the uniformity of the specimens (regarding void radio and segregation). The new preparation method results in a homogeneous specimen, which has a simple stress history. The repeatability of the proposed method in preparing identical...
A Displacement-Based Approach for the Seismic Retrofitting of Medium Rise Non-Ductile RC Frames with Added Shear Walls
Sucuoğlu, Haluk (Informa UK Limited, 2011-01-01)
A simple displacement-based methodology is presented in this study for the seismic retrofitting of medium height non-ductile concrete frames. Deformation capacities of the existing columns control design. A minimum amount of infill shear walls are added in both orthogonal directions for maintaining the deformation levels below the level dictated by the existing columns, which are usually at the ground story. Interstory drifts and member end rotations are employed as performance parameters. The proposed disp...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Unlusoy and M. L. Süzen, “A new method for automated estimation of joint roughness coefficient for 2D surface profiles using power spectral density,”
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES
, pp. 0–0, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42108.