Forward problem solution for electrical conductivity imaging via contactless measurements

Download
1999-04-01
The forward problem of anew medical imaging system is analysed in this study. This system uses magnetic excitation to induce currents inside a conductive body and measures the magnetic fields of the induced currents. The forward problem, that is determining induced currents in the conductive body and their magnetic fields, is formulated. For a general solution of the forward problem, the finite element method (FEM) is employed to evaluate the scalar potential distribution. Thus, inhomogeneity and anisotropy of conductivity is taken into account for the FEM solutions. An analytical solution for the scalar potential is derived for homogeneous conductive spherical objects in order to test FEM solutions. It is observed that the peak error in FEM solutions is less than 2%. The numerical system is used to reveal the characteristics of the measurement system via simulations. Currents are induced in a 9 x 9 x 5 cm body of conductivity 0.2 S m(-1) by circular coils driven sinusoidally. It is found that a 1 cm shift in the perturbation depth reduces the field magnitudes to approximately one-tenth. In addition, the distance between extrema increases. Further simulations carried out using different coil configurations revealed the performance of the method and provided a design perspective for a possible data acquisition system.
PHYSICS IN MEDICINE AND BIOLOGY

Suggestions

Forward problem solution of electromagnetic source imaging using a new BEM formulation with high-order elements
Gençer, Nevzat Güneri (IOP Publishing, 1999-09-01)
Representations of the active cell populations on the cortical surface via electric and magnetic measurements are known as electromagnetic source images (EMSIs) of the human brain. Numerical solution of the potential and magnetic fields for a given electrical source distribution in the human brain is an essential part of electromagnetic source imaging. In this study, the performance of the boundary element method (BEM) is explored with different surface element types. A new BEM formulation is derived that m...
ESTIMATION OF TISSUE RESISTIVITIES FROM MULTIPLE-ELECTRODE IMPEDANCE MEASUREMENTS
Eyüboğlu, Behçet Murat; WOLF, PD (IOP Publishing, 1994-01-01)
In order to measure in vivo resistivity of tissues in the thorax, the possibility of combining anatomical data extracted from high-resolution images with multiple-electrode impedance measurements, a priori knowledge of the range of tissue resistivities, and a priori data on the instrumentation noise is assessed in this study. A statistically constrained minimum-mean-square error estimator (MIMSEE) that minimizes the effects of linearization errors and instrumentation noise is developed and compared to the c...
Sensitivity of EEG and MEG measurements to tissue conductivity
Gençer, Nevzat Güneri (IOP Publishing, 2004-03-07)
Monitoring the electrical activity inside the human brain using electrical and magnetic field measurements requires a mathematical head model. Using this model the potential distribution in the head and magnetic fields outside the head are computed for a given source distribution. This is called the forward problem of the electro-magnetic source imaging. Accurate representation of the source distribution requires a realistic geometry and an accurate conductivity model. Deviation from the actual head is one ...
Structural and functional damages of whole body ionizing radiation on rat brain homogenate membranes and protective effect of amifostine
ÇAKMAK, GÜLGÜN; Severcan, Mete; Zorlu, Faruk; Severcan, Feride (Informa UK Limited, 2016-01-01)
Purpose: To investigate the effects of whole body ionizing radiation at a sublethal dose on rat brain homogenate membranes and the protective effects of amifostine on these systems at molecular level.
Use of the isolated problem approach for multi-compartment BEM models of electro-magnetic source imaging
Gençer, Nevzat Güneri (IOP Publishing, 2005-07-07)
The isolated problem approach (IPA) is a method used in the boundary element method (BEM) to overcome numerical inaccuracies caused by the high-conductivity difference in the skull and the brain tissues in the head. Hamalainen and Sarvas (1989 IEEE Trans. Biomed. Eng. 36 165-71) described how the source terms can be updated to overcome these inaccuracies for a three-layer head model. Meijs et al (1989 IEEE Trans. Biomed. Eng. 36 103849) derived the integral equations for the general case where there are an ...
Citation Formats
N. G. Gençer, “Forward problem solution for electrical conductivity imaging via contactless measurements,” PHYSICS IN MEDICINE AND BIOLOGY, pp. 927–940, 1999, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35426.