Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Statistical Analysis of Residue Signal for Backward Compatible HDR Image Coding
Date
2017-07-29
Author
Kamışlı, Fatih
Koz, Alper
Zerman, Emin
Valenzise, Giuseppe
Dufaux, Frederic
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
Backward compatibility to the existing 8-bit displays for HDR image and video compression is an essential requirement for the wide acceptance of HDR technology by the users. While these previous methods mainly focus on the rate-distortion optimization of base layer, the encoding of the residue in the enhancement layer comparatively has received less attention. In this paper, we investigate whether HDR image coding residue exhibits also local anisotropic characteristics or not as in the case of motion compensated LDR video coding residue. The verification of existence of such characteristics, as an essential initial stage in such a research, form a base for the development of directional encoding methods for HDR residue as well. For this purpose, statistical auto-covariance analysis on HDR image coding residue is performed in this paper. Specifically, we first interpret the resulting auto-covariance model parameters for HDR images and then the behavior of these parameters is analyzed with respect to bitrate, spatial activity and dynamic range as the main variables in HDR image coding. The experiments indicate that the HDR residue exhibits local anisotropic characteristics, which enables the use of directional methods for the encoding of enhancement layer in HDR coding.
Subject Keywords
High dynamic range
,
Residue coding
,
Local characteristics
,
Backward compatible
,
Auto-covariance analysis
URI
https://hdl.handle.net/11511/35447
DOI
https://doi.org/10.1109/siu.2017.7960628
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Statistical Analysis and Directional Coding of Layer-based HDR Image Coding Residue
Feyiz, Kutan; Kamışlı, Fatih; Zerman, Emin; Valenzise, Giuseppe; Koz, Alper; Dufaux, Frederic (2017-10-18)
Existing methods for layer-based backward compatible high dynamic range (HDR) image and video coding mostly focus on the rate-distortion optimization of base layer while neglecting the encoding of the residue signal in the enhancement layer. Although some recent studies handle residue coding by designing function based fixed global mapping curves for 8-bit conversion and exploiting standard codecs on the resulting 8-bit images, they do not take the local characteristics of residue blocks into account. Inspi...
Privacy protection of tone-mapped HDR images using false colours
ÇİFTÇİ, Serdar; Akyüz, Ahmet Oğuz; PİNHEİRO, Antonio M. G.; Ebrahimi, Touradj (2017-12-01)
High dynamic range (HDR) imaging has been developed for improved visual representation by capturing a wide range of luminance values. Owing to its properties, HDR content might lead to a larger privacy intrusion, requiring new methods for privacy protection. Previously, false colours were proved to be effective for assuring privacy protection for low dynamic range (LDR) images. In this work, the reliability of false colours when used for privacy protection of HDR images represented by tone-mapping operators...
Evaluation of tone mapping and exposure fusion algorithms on HDR videos for face detection and recognition
Çavdarlı, Fehime Betül; Akyüz, Ahmet Oğuz; Department of Computer Engineering (2022-2-08)
High dynamic range (HDR) images have become popular recently especially for video surveillance systems. One of the most important reasons for this is that in areas where there is under or over-exposure, classical low dynamic range (LDR) images are insufficient to capture details, while HDR images have better visual details and contain wide range illumination values. However, since HDR images cannot be viewed on conventional LDR displays, additional processing such as tonemapping and/or fusion are required t...
Directional coding of backward compatible high dynamic range (HDR) image coding residues
Feyiz, Kutan; Kamışlı, Fatih; Department of Electrical and Electronics Engineering (2018)
High dynamic range (HDR) image and video formats are proposed to overcome limitations of widely accepted standard 8-bit low dynamic range (LDR) image and video representations. The main aim of these formats is to encode the whole luminance range of real world scenes which changes from extreme darkness ( 10 − 6 cd/ m 2 ) to bright sunshine ( 10 8 cd/ m 2 ), and to generate and store such scenes independent from the display technology. To achieve a successful transition from LDR to HDR technology, backward ...
Automatic saturation correction for dynamic range management algorithms
Artusi, Alessandro; POULİ, Tania; BANTERLE, Francesco; Akyüz, Ahmet Oğuz (2018-04-01)
High dynamic range (HDR) images require tone reproduction to match the range of values to the capabilities of a display. For computational reasons and given the absence of fully calibrated imagery, rudimentary color reproduction is often added as a post-processing step rather than integrated into tone reproduction algorithms. In the general case, this currently requires manual parameter tuning, and can be automated only for some global tone reproduction operators by inferring parameters from the tone curve....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Kamışlı, A. Koz, E. Zerman, G. Valenzise, and F. Dufaux, “Statistical Analysis of Residue Signal for Backward Compatible HDR Image Coding,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35447.