Cyclic Testing of Reinforced Concrete Double Walls

2017-03-01
Reinforced concrete double walls are semi-precast structural elements constructed with factory-produced concrete shells on two exterior sides and cast-in-place concrete in the middle of the section. Their use has been limited in seismic zones due to the difficulty of connecting the adjacent double walls for monolithic action, and providing suitable seismic details in the presence of the lattice girder that is used to hold the concrete shells together. These limitations were overcome with the invention of discrete stainless steel connector ties with wave-shaped webs that can be used to connect the two concrete shells efficiently. This study presents experimental results on the reversed cyclic testing of reinforced concrete double walls constructed with the aforementioned ties, for the first time in the literature. Four experiments were conducted on double walls with rectangular, U-, and T-sections. Test results were evaluated in terms of strength, ductility, stiffness, and energy dissipation characteristics. The results obtained demonstrate the ability of double walls to sustain reversed cyclic displacement demands with significant ductility.
ACI STRUCTURAL JOURNAL

Suggestions

Scale Effect on CFRP Strengthening of Infilled Reinforced Concrete Frames
AKIN, EMRE; Canbay, Erdem; Binici, Barış; Ozcebe, Guney (2015-06-01)
The diagonal application of Carbon Fiber-Reinforced Polymer fabrics on hollow clay tile infill walls has been qualified as an efficient rehabilitation method for deficient reinforced concrete frames. However, majority of the experimental studies were conducted on 1/3-scaled RC frames and the effect of specimen scaling has not been questioned. In the current study, the results of an experimental campaign on 1/2-scaled RC frames are presented. Test specimens are grouped in two series having two different aspe...
Seismic Strengthening with Precast Concrete Panels - Theoretical Approach
Baran, Mehmet; Canbay, Erdem; Tankut, Tugrul (2010-01-01)
An economical, structurally effective and practically applicable seismic retrofitting technique has been developed on the basis of the principle of strengthening the existing hollow brick infill walls by using high strength precast concrete panels. The technique would not require evacuation of the building and would be applicable without causing much disturbance to the occupant. For this purpose, a total of eighteen reinforced concrete frames with hollow brick infill walls were tested under reversed cyclic ...
Seismic behavior of vertical reinforced autoclaved aerated concrete (AAC) panel walls
Taghipour, Armin; Canbay, Erdem; Binici, Barış; Department of Civil Engineering (2016)
In this study, the in-plane seismic behavior of autoclaved aerated concrete (AAC) vertical load-bearing wall panels is examined. Because of the complex behavior of AAC shear walls under cyclic lateral loading and axial load, the design provisions are fundamentally important. The main objective of this study is to validate proposed design provisions for AAC structures in Turkey. Six specimens with different properties and geometries were constructed and tested at Structural Mechanics Laboratory of METU. Mech...
Seismic behavior of reinforced autoclaved aerated concrete wall panels
TAGHIPOUR, ARMIN; Canbay, Erdem; Binici, Barış; ALDEMİR, ALPER; Uzgan, Ugur; ERYURTLU, ZAFER (2018-09-01)
Vertical reinforced autoclaved aerated concrete (AAC) panel systems are among attractive alternatives for low‐rise buildings. The popularity of AAC panels in building construction is increasing due to their unique material properties, such as being light weight, good insulator, fire resistant combined with having high speed of erection and ease of quality control. However, past experimental evidence on the seismic response of reinforced vertical panels is rather limited with few tests on multi‐panel specime...
Experimental investigation of structural systems made of sheathed cold-formed steel wall panels
Pehlivan, Barış Mert; Baran, Eray; Department of Civil Engineering (2023-1-12)
Cold-formed steel (CFS) structural systems are considered to be an innovative and newly developing construction method. Because of advantages such as lower fabrication periods, high strength/weight ratio and ease of construction, CFS structural systems have been used increasingly all around the world, including seismically active areas. Although there have been many studies in the literature, CFS structural systems are relatively new for the civil engineering practice and few existing specifications regardi...
Citation Formats
A. ALDEMİR, B. Binici, and E. Canbay, “Cyclic Testing of Reinforced Concrete Double Walls,” ACI STRUCTURAL JOURNAL, pp. 395–406, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35472.