Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Use of Class C fly ashes for the stabilization of an expansive soil
Date
2001-07-01
Author
Çokça, Erdal
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
0
downloads
Cite This
Excessive heave associated with swelling of expansive soils can cause considerable distress to lightweight civil engineering structures. Several methods have been suggested to control this problem. The most commonly used method is addition of stabilizing agents, such as lime or cement to the expansive soil. In this study, high-calcium and low-calcium class C fly ashes from the Soma and Tuncbilek thermal power plants, respectively, in Turkey, were used for stabilization of an expansive soil. An evaluation of the expansive soil-lime, expansive soil-cement, and expansive soil-fly ash systems is presented. Lime and cement were added to the expansive soil at 0–8% to establish baseline values. Soma fly ash and Tuncbilek fly ash were added to the expansive soil at 0–25%. Test specimens were subjected to chemical composition, grain size distribution, consistency limits, and free swell tests. Specimens with fly ash were cured for 7 days and 28 days, after which they were subjected to oedometer free swell tests. Based on the favorable results obtained, it can be concluded that the expansive soil can be successfully stabilized by fly ashes.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
General Environmental Science
URI
https://hdl.handle.net/11511/35476
Journal
Journal Of Geotechnical And Geoenvironmental Engineering
DOI
https://doi.org/10.1061/(asce)1090-0241(2001)127:7(568)
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Stability Charts for the Collapse of Residual Soil in Karst
DRUMM, Eric C.; Akturk, Oezguer; Akgün, Haluk; Tutluoğlu, Levend (American Society of Civil Engineers (ASCE), 2009-07-01)
Collapse of the residual soil over bedrock cavities often occurs during construction in karst terrain, particularly when the thickness of the residuum is reduced during excavation. Even if an estimate of the strength of the residual soil is known, uncertainty with respect to the size/geometry of the subterranean voids makes a detailed analysis difficult, and straightforward methods to check the stability are needed. In this study, numerical analyses were performed to develop a stability chart expressed in t...
Capacity of shallow foundations on saturated cohesionless soils under combined loading
Yılmaz, Mustafa Tolga; Bakır, Bahadır Sadık (Canadian Science Publishing, 2009-06-01)
Under seismically induced loading, shallow foundations commonly fail by overturning on saturated soils. While the excess pore pressures may have fully dissipated following construction, undrained conditions are typically presumed in the assessment of seismic capacity in conventional applications due to the high rates of loading induced during an earthquake. Undrained strength, however, can be critically dependent on the history of loading and significantly heterogeneous and anisotropic around a foundation. ...
Residual Shear Strength Measured by Laboratory Tests and Mobilized in Landslides
Mesri, Gholamreza; Huvaj Sarıhan, Nejan (American Society of Civil Engineers (ASCE), 2012-05-01)
Drained residual shear strength measured by multiple reversal direct shear or ring shear tests has been successfully used for over four decades for stability analyses of reactivated landslides in stiff clays and clay shales; A body of literature has accumulated in recent decades, claiming that "healing" or "strength regain" is realized in time on preexisting slip surfaces already at residual condition. In other words, the shear stress required to reactivate a landslide is claimed to be larger than the drain...
Analysis of factors affecting strain distribution in geosynthetics
Kutay, ME; Güler, Murat; Aydilek, AH (American Society of Civil Engineers (ASCE), 2006-01-01)
Localized strains due to production defects, seams, and punctured zones significantly affect mechanical performance of geosynthetic materials. Accurate determination of localized strains becomes particularly important for quality control/quality assurance evaluation of these materials and may play a critical role in design problems. A battery of tensile tests was conducted on 12 different geosynthetics to assess the effects of seam type, puncture, and clamping techniques on strain distributions. Digital ima...
CPT-Based Probabilistic Soil Characterization and Classification
Çetin, Kemal Önder (American Society of Civil Engineers (ASCE), 2009-01-01)
Due to lack of soil sampling during conventional cone penetration testing, it is necessary to characterize and classify soils based on tip and sleeve friction values as well as pore pressure induced during and after penetration. Currently available semiempirical methods exhibit a significant variability in the estimation of soil type. Within the confines of this paper it is attempted to present a new probabilistic cone penetration test (CPT)-based soil characterization and classification methodology, which ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Çokça, “Use of Class C fly ashes for the stabilization of an expansive soil,”
Journal Of Geotechnical And Geoenvironmental Engineering
, pp. 568–573, 2001, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35476.