Experimental investigation of effects of cutting parameters on surface roughness in the WEDM process

2000-10-01
The experimental study presented in this paper aims to select the most suitable cutting and offset parameter combination for the wire electrical discharge machining process in order to get the desired surface roughness value for the machined workpieces. A series of experiments have been performed on 1040 steel material of thicknesses 30, 60 and 80 mm, and on 2379 and 2738 steel materials of thicknesses 30 and 60 mm. The test specimens have been cut by using different cutting and offset parameter combinations of the "Sodick Mark XI A500 EDW" wire electrical discharge machine in the Middle East Technical University CAD/CAM/Robotics Center. The surface roughness of the testpieces has been measured by using a surface roughness measuring device. The related tables and charts have been prepared for 1040, 2379, 2738 steel materials. The tables and charts can be practically used for WEDM parameter selection for the desired workpiece surface roughness.
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE

Suggestions

Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone, and surface roughness in EDM process
Shabgard, Mohammadreza; Oliaei, Samad Nadimi Bavil; Seyedzavvar, Mirsadegh; Najadebrahimi, Ahmad (2011-12-01)
An axisymmetric three-dimensional model or temperature distribution in the electrical discharge machining process has been developed using the finite element method to estimate the surface integrity characteristics of AISI H13 tool steel as workpiece. White layer thickness, depth of heat affected zone, and arithmetical mean roughness consisting of the studied surface integrity features on which the effect of process parameters, including pulse on-time and pulse current were investigated. Additionally, the e...
Design and analysis of filament wound composite tubes
Balya, Bora; Parnas, Kemal Levend; Department of Mechanical Engineering (2004)
This thesis is for the investigation of the design and analysis processes of filament wound composite tubes under combined loading. The problem is studied by using a computational tool based on the Finite Element Method (FEM). Filament wound tubes are modeled as multi layered orthotropic tubes. Several analyses are performed on layered orthotropic tubes by using FEM. Results of the FEM are examined in order to investigate characteristics of filament wound tubes under different combined loading conditions. W...
Experimental results for 2D magnetic resonance electrical impedance tomography (MR-EIT) using magnetic flux density in one direction
Birgul, O; Eyüboğlu, Behçet Murat; Ider, YZ (IOP Publishing, 2003-11-07)
Magnetic resonance electrical impedance tomography (MR-EIT) is an emerging imaging technique that reconstructs conductivity images using magnetic flux density measurements acquired employing MRI together with conventional EIT measurements. In this study, experimental MR-EIT images from phantoms with conducting and insulator objects are presented. The technique is implemented using the 0.15 T Middle East Technical University MRI system. The dc current method used in magnetic resonance current density imaging...
Computational elastodynamics of functionally graded thick-walled cylinders and annular coatings subjected to pressure shocks
Abeidi, Abdelrahim; Dağ, Serkan (2022-12-01)
A computational technique based on domain-boundary element method (D-BEM) is developed for elastodynamic analysis of functionally graded thick-walled cylinders and annular coatings subjected to pressure shock type of loadings. The formulation is built on the wave equation, which is derived in accordance with plane elastody-namics. Weighted residual statement for the wave equation is expressed by using the static fundamental solution as the weight function. Applying integration by parts and incorporating the...
An experimental study of residual fiber strains in Ti-15-3 continuous fiber composites
Pickard, S.M.; Miracle, D.B.; Majumdar, B.S.; Kendig, K.L.; Rothenflue, L.; Çöker, Demirkan (Elsevier BV, 1995-01-01)
A simplified experimental technique to determine the axial fiber residual strain in continuously-reinforced metal matrix composites is described. The residual fiber strains in two Ti-15V-3Cr-3Al-3Sn/SiC metal matrix composites have been measured with this technique. Residual fiber strains on the order of 0.2% are measured in the as-processed condition, and the residual stresses approach zero after testing the composite in tension to failure at room temperature. A conceptual description of the effect of tens...
Citation Formats
M. İ. Gökler, “Experimental investigation of effects of cutting parameters on surface roughness in the WEDM process,” INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, pp. 1831–1848, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35521.