Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
TL and TSC studies on TlGaSe2 layered single crystals
Date
2013-12-01
Author
Isik, M.
Bulur, Enver
Hasanlı, Nızamı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
178
views
0
downloads
Cite This
Defects in - as grown - TlGaSe2 layered single crystals were investigated using Thermoluminescence (TL) and Thermally Stimulated Currents (TSC) techniques in the temperature range 10-300 K. TL and TSC curves of samples illuminated using a light with energy greater than the band gap of the material, i.e. blue light (similar to 470 nm) at 10 K, exhibited peaks around 27 and 28 K, respectively, when measured by heating up the samples at a rate of 1 K/s. TL and TSC curves were analyzed to characterize the defects responsible for the peaks. Both TL and TSC peaks were observed to be obeying first order kinetics. Thermal activation energies of the peaks were determined using various methods: curve fitting, initial rise, peak shape and different heating rates. For both TL and TSC peaks, thermal activation energy was determined as around 8 meV, implying that they may originate from similar kinds of trapping centers. A distribution of traps (in terms of energy) was experimentally verified by illuminating the sample at different temperatures and measuring the TL curves. As a result of this, the apparent thermal energies were observed to be shifted from similar to 8 to similar to 17 meV by increasing the illumination temperature from 10 to 16 K.
Subject Keywords
Biophysics
,
Atomic and Molecular Physics, and Optics
,
Biochemistry
,
General Chemistry
,
Condensed Matter Physics
URI
https://hdl.handle.net/11511/35525
Journal
JOURNAL OF LUMINESCENCE
DOI
https://doi.org/10.1016/j.jlumin.2013.07.010
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
TL and OSL studies on gallium sulfide (GaS) single crystals
Isik, M.; YÜKSEL, MEHMET; TOPAKSU, MUSTAFA; Hasanlı, Nızamı (Elsevier BV, 2020-09-01)
Gallium sulfide (GaS) single crystals were investigated using thermoluminescence (TL) and optically stimulated luminescence (OSL) measurements. TL experiments performed in the room temperature (RT)-450 °C range presented a glow curve consisting in six single discrete peaks. Analyses of TL glow curve by computerized glow curve deconvolution method showed that the trapping centers responsible for peaks are located at 0.98, 1.09, 1.15, 1.76, 1.87 and 1.90 eV. The order of kinetics found between 1 and 2 indicat...
Annealing effect on the low temperature thermoluminescence properties of GaSe single crystals
Isik, M.; Hadibrata, W.; Hasanlı, Nızamı (Elsevier BV, 2014-10-01)
Trapping centers in as-grown GaSe single crystals have been investigated by thermoluminescence (TL) measurements in the temperature range of 30-300 K. The analysis of the observed peaks in TL glow curve to determine the activation energies of the associated centers were accomplished using curve fitting, initial rise and peak shape methods. Activation energies of the revealed four trapping centers obtained from various methods were in good agreement with each other on the energy values of 0.14, 0.18, 0.24 an...
Dispersive optical constants of Tl2InGaSe4 single crystals
Qasrawi, A. F.; Hasanlı, Nızamı (IOP Publishing, 2007-09-01)
The structural and optical properties of Bridgman method grown Tl2InGaSe4 crystals have been investigated by means of room temperature x-ray diffraction, and transmittance and reflectance spectral analysis, respectively. The x-ray diffraction technique has shown that Tl2InGaSe4 is a single phase crystal of a monoclinic unit cell that exhibits the lattice parameters of a = 0.77244 nm, b = 0.64945 nm, c = 0.92205 nm and beta = 95.03 degrees . The optical data have revealed an indirect allowed transition band ...
Absorption edge and optical constants of layered structured Tl2Ga2Se3S single crystals
Hasanlı, Nızamı (IOP Publishing, 2012-06-01)
The optical properties of Tl2Ga2Se3S layered crystals have been studied through transmission and reflection measurements in the photon energy range 1.13-2.82 eV. The optical indirect and direct transitions with band gap energies of 2.15 and 2.54 eV, respectively, were determined from the analysis of absorption data at room temperature. The dispersion of refractive index is discussed in terms of the Wemple-DiDomenico single-effective oscillator model. The refractive index dispersion parameters, namely oscill...
Thermoluminescence characteristics of Bi 12 SiO 20 single crystals
Isik, M.; SARIGÜL, NESLİHAN; Hasanlı, Nızamı (Elsevier BV, 2020-08-01)
Trapping center properties of bismuth silicon oxide (Bi12SiO20) single crystals were investigated by thermoluminescence (TL) measurements performed in the 50–400 °C temperature range. Experimental TL curve recorded at heating rate of 1 °C/s presented two overlapped peaks around 279 and 362 °C. The heating rate dependency of TL curve was also studied for heating rates between 1 and 6 °C/s. The measured TL curves were analyzed using curve fitting, initial rise and different heating rate methods. The results o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Isik, E. Bulur, and N. Hasanlı, “TL and TSC studies on TlGaSe2 layered single crystals,”
JOURNAL OF LUMINESCENCE
, pp. 163–168, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35525.