All unitary cubic curvature gravities in D dimensions

Download
2011-10-07
Sisman, Tahsin Cagri
Gullu, Ibrahim
Tekin, Bayram
We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.
CLASSICAL AND QUANTUM GRAVITY

Suggestions

General tensor Lagrangians from the gravitational Higgs mechanism
DEMİR, DURMUŞ ALİ; Park, N. K. (IOP Publishing, 2009-05-21)
The gravitational Higgs mechanism proposed by 't Hooft in arXiv:0708.3184 involves the spacetime metric g(mu nu) as well as the induced metric (g) over bar (mu nu) proportional to eta(ab)partial derivative(mu)phi(a)partial derivative(nu)phi(b) where phi(a) (a = 0,..., 3), as we call it, break all four diffeomorphisms spontaneously via the vacuum expectation values proportional to x(a). In this framework, we construct and analyze the most general action density in terms of various invariants involving the c...
Energy in topologically massive gravity
Deser, S; Tekin, Bayram (IOP Publishing, 2003-11-07)
We define conserved gravitational charges in cosmologically extended topologically massive gravity, exhibit them in surface integral form about their de Sitter or flat vacua and verify their correctness in terms of two basic types of solution.
Topologically massive gravity as a Pais-Uhlenbeck oscillator
Sarıoğlu, Bahtiyar Özgür; Tekin, Bayram (IOP Publishing, 2006-12-21)
We give a detailed account of the free- field spectrum and the Newtonian limit of the linearized ` massive' ( Pauli -Fierz), 'topologically massive' ( Einstein Hilbert - Chern - Simons) gravity in 2 + 1 dimensions about a Minkowski spacetime. For a certain ratio of the parameters, the linearized free theory is Jordan diagonalizable and reduces to a degenerate ` Pais - Uhlenbeck' oscillator which, despite being a higher derivative theory, is ghost free.
THE ENERGY LOCALIZATION PROBLEM AND THE RENORMALIZED VACUUM ENERGY IN STATIC ROBERTSON-WALKER UNIVERSES
BAYM, SS (Springer Science and Business Media LLC, 1994-10-01)
We calculate the renormalized quantum vacuum energy inside a spherical boundary for the massless conformal scalar field in curved background Robertson-Walker geometry. We use the mode sum method with an exponential cuttoff. In our calculations we do not make assumptions about the exterior geometry or the global topology of the universe.
New approach to conserved charges of generic gravity in AdS spacetimes
Altas, Emel; Tekin, Bayram (American Physical Society (APS), 2019-02-12)
Starting from a divergence-free rank-4 tensor of which the trace is the cosmological Einstein tensor, we give a construction of conserved charges in Einstein's gravity and its higher derivative extensions for asymptotically anti-de Sitter spacetimes. The current yielding the charge is explicitly gauge invariant, and the charge expression involves the linearized Riemann tensor at the boundary. Hence, to compute the mass and angular momenta in these spacetimes, one just needs to compute the linearized Riemann...
Citation Formats
T. C. Sisman, I. Gullu, and B. Tekin, “All unitary cubic curvature gravities in D dimensions,” CLASSICAL AND QUANTUM GRAVITY, pp. 0–0, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35560.