Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Detecting User Emotions in Twitter through Collective Classification
Date
2016-11-11
Author
İLERİ, İBRAHİM
Karagöz, Pınar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
The explosion in the use of social networks has generated a big amount of data including user opinions about varying subjects. For classifying the sentiment of user postings, many text-based techniques have been proposed in the literature. As a continuation of sentiment analysis, there are also studies on the emotion analysis. Due to the fact that many different emotions are needed to be dealt with at this point, the problem gets more complicated as the number of emotions to be detected increases. In this study, a different user-centric approach for emotion detection is considered such that connected users may be more likely to hold similar emotions; therefore, leveraging relationship information can complement emotion inference task in social networks. Employing Twitter as a source for experimental data and working with the proposed collective classification algorithm, emotions of the users are predicted in a collaborative setting.
Subject Keywords
Social networks
,
Emotion analysis
,
Sentiment analysis
,
Collective classification
URI
https://hdl.handle.net/11511/35621
DOI
https://doi.org/10.5220/0006037502050212
Collections
Department of Computer Engineering, Conference / Seminar