Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Amino acid substitutions in the subunit interface enhancing thermostability of Thermoplasma acidophilum citrate synthase
Date
1998-08-19
Author
Erduran, I
Kocabıyık, Semra
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
We have used citrate synthase from Thermoplasma (Tp.) acidophilum as a thermostable model system to investigate the role of hydrophobic interactions in dimer interface for maintaining high temperature stability. Three mutant enzymes were constructed by single amino acid substitutions in the interface helices: Ala97 --> Ser, Ala104 --> Thr, and Gly209 --> Ala. All of the mutations enhanced the thermostability of Tp. citrate synthase, while improving its catalytic properties (K-m, V-max, and specific activity). The highest thermostability was achieved by the Gly209 --> Ala substitution. The half-life of irreversible inactivation of the G209A mutant enzyme at 85 degrees C was about 57 min, and the midpoint of guanidinium chloride (GdmCl) induced irreversible denaturation was at 2.0 M GdmCl. Our results showed that amino acid substitutions increasing or decreasing interface hydrophobicity could further increase the thermostability of the Tp. citrate synthase. Thus, interface substitutions affecting the entropy of the unfolded state did not prove to be so critical in protein thermostabilization at higher temperatures. (C) 1998 Academic Press.
Subject Keywords
Biophysics
,
Cell Biology
,
Biochemistry
,
Molecular Biology
URI
https://hdl.handle.net/11511/35625
Journal
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS
DOI
https://doi.org/10.1006/bbrc.1998.9192
Collections
Department of Biology, Article