Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins
Date
2011-04-27
Author
Tefon, Burcu E.
Maass, Sandra
Ozcengiz, Erkan
Becher, Doerte
Hecker, Michael
Özcengiz, Gülay
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
230
views
0
downloads
Cite This
Whooping cough, caused by the gram negative pathogen Bordetella pertussis, is a worldwide acute respiratory disease that predominantly involves infants. In the present study, surface proteins of B. pertussis Tohama I and Saadet strains were identified by using 2DE followed by MALDI-TOF-MS/MS analysis and also geLC-MS/MS. With these approaches it was possible to identify 45 and 226 proteins, respectively. When surface proteins of the strains were separated by 2DE and analyzed by Western blotting for their reactivity, a total of 27 immunogenic spots which correspond to 11 different gene products were determined. Glutamine-binding periplasmic protein, leu/ile/val-binding protein, one putative exported protein, and iron-superoxide dismutase (Fe-SOD) were found as immunogenic for the first time in Bordetella. Of a total of 226 proteins identified, 16 were differentially expressed in B. pertussis Saadet and Tohama I strains. Five proteins were expressed only in Saadet (adhesin, chaperone protein DnaJ, fimbrial protein FimX, putative secreted protein Bsp22 and putative universal stress protein), and two (ABC transporter substrate-binding protein and a putative binding protein-dependent transport periplasmic protein) only in Tohama I.
Subject Keywords
Bordetella pertussis
,
Immunoproteomics
,
Surfaceome
,
Vaccine candidates
URI
https://hdl.handle.net/11511/35632
Journal
VACCINE
DOI
https://doi.org/10.1016/j.vaccine.2011.02.086
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Assessment of immune protective capacities of the recombinant outer membrane protein q, iron superoxide dismutase and putative lipoprotein from bordetella pertussis
Yılmaz, Çiğdem; Özcengiz, Gülay; Department of Biology (2017)
Pertussis is a contagious disease which is commonly seen among infants and children and caused by a human pathogen known as Bordetella pertussis. There are currently two vaccine types available against the disease; whole-cell (wP) and acellular pertussis (aP) vaccines. Due to the side effects of wP vaccine, aP vaccines are commonly preferred for vaccination. Despite high vaccination coverage, high incidence rates among adolescents and adults have been reported causing the resurgence of pertussis to be the f...
Analysis of cross-immune reaction between strains of Bordetella Pertussis
İşcan, Elvin; Özcengiz, Gülay; Department of Biochemistry (2009)
Bordetella pertussis is the causative agent of whooping cough which is a worldwide acute respiratory disease that predominantly involves infants. Whooping cough is one of the ten most common causes of death from infectious diseases worldwide. The increased coverage of the primary pertussis vaccination (DaBT-IPA-Hib) decreased the incidence of disease in Turkey dramatically. However, in spite of the incidence decline, the circulation of B. pertussis has not yet been eliminated, and a change in the clinical s...
Towards whole cell immunoproteome and subproteomes of bordetella pertussis
Tefon, Burcu Emine; Özcengiz, Gülay; Department of Biology (2012)
Bordetella pertussis is a gram-negative, human pathogen and etiologic agent of whooping cough (pertussis), a highly contagious, acute respiratory illness. In this study, the analysis of whole immunproteome and subproteomes of this microorganism was performed. The soluble cytoplasmic proteomes of B. pertussis Tohama I strain and a local isolate Saadet were separated by 2DE. By Western blot analysis, we identified 25 immunogenic proteins of three categories. In the first group, there were well-known proteins ...
Investigation on immunoprotectivity of recombinant vaccine candidates glutamine-binding periplasmic protein and putative peptidoglycan-binding protein in mouse model
Çiçek, Mustafa; Özcengiz, Gülay; Özcengiz, Erkan; Department of Biotechnology (2014)
Bordetella pertussis is a gram negative coccobacillus that causes pertussis known as whooping cough. After mass-vaccination started in 1940s, incidence of the disease has decreased. However, B. pertussis circulation in population has not been prevented completely. Starting from the first vaccination, development of several vaccines have been performed. These whole cell (Pw) and acellular pertussis (Pa) vaccines are not completely effective in terms of sustained, lifelong immunity and thus failure in elimina...
Assessment of the immunogenicity and formulation of recombinant proteins from SARS-CoV-2 as vaccine antigens
Keser, Duygu; Özcengiz, Gülay; Department of Biology (2022-9-15)
COVID-19 is an infectious disease caused by SARS-CoV-2. The virus was first detected in Wuhan, China in late 2019, and the outbreak was declared a pandemic in January 2020 by WHO, and continues to spread worldwide. As of July 2022, more than 575 million confirmed cases have been detected all over the world, and more than 6 million people died from the disease. One of the most important public health measures in combating the spread of infectious diseases is vaccination. Despite the existence of rapidly deve...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. E. Tefon, S. Maass, E. Ozcengiz, D. Becher, M. Hecker, and G. Özcengiz, “A comprehensive analysis of Bordetella pertussis surface proteome and identification of new immunogenic proteins,”
VACCINE
, pp. 3583–3595, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35632.