Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Photocatalytic Conversion of Nitric Oxide on Titanium Dioxide: Cryotrapping of Reaction Products for Online Monitoring by Mass Spectrometry
Download
index.pdf
Date
2016-04-21
Author
Lu, Weigang
Olaitan, Abayomi D.
Brantley, Matthew R.
Zekavat, Behrooz
Altunöz Erdoğan, Deniz
Ozensoy, Emrah
Solouki, Touradj
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
Details of coupling a catalytic reaction chamber to a liquid nitrogen-cooled cryofocuser/triple quadrupole mass spectrometer for online monitoring of nitric oxide (NO) photocatalytic reaction products are presented. Cryogenic trapping of catalytic reaction products, via cryofocusing prior to mass spectrometry analysis, allows unambiguous characterization of nitrous oxide (N2O) and nitrogen oxide species (i.e., NO and nitrogen dioxide (NO2)) at low concentrations. Results are presented, indicating that the major photocatalytic reaction product of NO in the presence of titanium dioxide (TiO2) P25 and pure anatase catalysts when exposed to ultraviolet (UV) light (at a wavelength of 365 nm) is N2O. However, in the presence of rutile-rich TiO2 catalyst and UV light, the conversion of NO to N2O was less than 5% of that observed with the P25 or pure anatase TiO2 catalysts.
Subject Keywords
General Energy
,
Physical and Theoretical Chemistry
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
URI
https://hdl.handle.net/11511/35659
Journal
JOURNAL OF PHYSICAL CHEMISTRY C
DOI
https://doi.org/10.1021/acs.jpcc.5b10631
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Silver Nanoparticles Synthesized by Microwave Heating: A Kinetic and Mechanistic Re-Analysis and Re-Interpretation
Özkar, Saim (American Chemical Society (ACS), 2017-12-14)
A quantitative kinetics and mechanistic re-analysis is performed of an important 2016 paper that described the formation of Ag-n nanoparticles from the polyol reduction of silver nitrate in the presence of poly(N-vinylpyrrolidone) under microwave heating. Elegantly and expertly obtained, in operando synchrotron high-energy X-ray diffraction (HEXRD) data, integrated with the microwave heating for the first time, were used to follow the Ag-n nanoparticle formation reaction in real time and to obtain time-reso...
Conjugation effects on carrier mobilities of polythiophenes probed by time-resolved terahertz spectroscopy
Esentürk, Okan; Deongchamp, Dean M.; Heilweil, Edwin J. (American Chemical Society (ACS), 2008-07-24)
Optically generated carrier conductivity of thiophene-based spin-cast polymer films, as cast poly(3-hexylthiophene) (P3HT) and both as cast and above liquid crystalline temperature annealed poly(2,5-bis(3tetradecylthiophen-2yl)thieno[3,2-b]thiophene) (PBTTT), were measured by time-resolved THz spectroscopy (TRTS) and compared to reported thin-film transistor (TFT) device measurements. The relative mobilities of the samples measured by TRTS agree well with reported TFl` mobilities. Since TRTS is sensitive to...
A Comparative Density Functional Study of Hydrogen Peroxide Adsorption and Activation on the Graphene Surface Doped with N, B, S, Pd, Pt, Au, Ag, and Cu Atoms
Duzenli, Derya (American Chemical Society (ACS), 2016-09-15)
The adsorption of the hydrogen peroxide (H2O2) molecule, which is known as the common form of reactive oxygen species in living cells, was investigated theoretically over pure graphene and heteroatom- (nitrogen-, boron-, and sulfur-) and metal-atom- (silver-, gold-, copper-, palladium-, and platinum-) doped graphene surfaces using the density functional theory (DFT) method. This study involved the optimization of pure and doped graphene surfaces, adsorption of the gas molecule on top of the doped atoms and ...
Solid-state synthesis and X-ray diffraction studies of Na2S
Kizilyalli, M.; Bilgin, M.; Kizilyalli, H.M. (Elsevier BV, 1990-4)
Na2S was synthesized by a new solid-gas reaction of Na2CO3 with a sulfidizing gas mixture and a solid-solid reaction of carbon with Na2SO4. The reaction products were analyzed by X-ray powder diffraction and IR methods. Two new crystal modifications of Na2S were identified in addition to the previously reported antifluorite structure. They were designated as cubic Form II and orthorhombic Form III. The approximate unit cell dimensions were found to be a = 11.29 Å for the cubic form and a = 15.94, b = 16.00,...
Nanoparticle Formation Kinetics and Mechanistic Studies Important to Mechanism-Based Particle-Size Control: Evidence for Ligand-Based Slowing of the Autocatalytic Surface Growth Step Plus Postulated Mechanisms
Özkar, Saim (American Chemical Society (ACS), 2019-06-06)
Ligands are known to affect the formation, stabilization, size, and size-dispersion control of transition-metal and other nanoparticles, yet the kinetic and mechanistic basis for such ligand effects remains to be elucidated and then coupled to predictions for improved particle size and narrower particle size distribution syntheses. Toward this broad goal, the effect of the added excess ligand (L) and the stabilizer, L = POM9- (= the polyoxometalate, P2W15Nb3O629-) is studied for the formation of POM9--stabi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
W. Lu et al., “Photocatalytic Conversion of Nitric Oxide on Titanium Dioxide: Cryotrapping of Reaction Products for Online Monitoring by Mass Spectrometry,”
JOURNAL OF PHYSICAL CHEMISTRY C
, pp. 8056–8067, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35659.