Parameter Identification in MHD Duct Flow Cauchy Problem using the DRBEM

2018-08-31
Tezer, Münevver
Aydin, Cemre
In this study, the Hartmann number (Ha) is identified through the inverse formulation of Cauchy problem for magnetohydrodynamic (MHD) flow in a duct with insulated but no-slip or variably slipping walls. The solutions for direct and inverse problems are obtained using the dual reciprocity boundary element method (DRBEM), and Tikhonov regularization with L-curve method is used for solving ill-conditioned linear system of equations resulted from the inverse problem. The velocity and the induced magnetic field profiles are simulated from the direct solution depicting the well-known MHD characteristics. The Hartmann number is reconstructed from the inverse problem with an accuracy of 10−4 to 10−6. The DRBEM provides overdetermined information needed in the inverse MHD flow problem since it gives both the solution and its normal derivatives on the boundary points.