Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Parameter Identification in MHD Duct Flow Cauchy Problem using the DRBEM
Date
2018-08-31
Author
Tezer, Münevver
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
263
views
0
downloads
Cite This
In this study, the Hartmann number (Ha) is identified through the inverse formulation of Cauchy problem for magnetohydrodynamic (MHD) flow in a duct with insulated but no-slip or variably slipping walls. The solutions for direct and inverse problems are obtained using the dual reciprocity boundary element method (DRBEM), and Tikhonov regularization with L-curve method is used for solving ill-conditioned linear system of equations resulted from the inverse problem. The velocity and the induced magnetic field profiles are simulated from the direct solution depicting the well-known MHD characteristics. The Hartmann number is reconstructed from the inverse problem with an accuracy of 10−4 to 10−6. The DRBEM provides overdetermined information needed in the inverse MHD flow problem since it gives both the solution and its normal derivatives on the boundary points.
Subject Keywords
General Physics and Astronomy
URI
https://hdl.handle.net/11511/35754
DOI
https://doi.org/10.1088/1742-6596/1141/1/012032
Collections
Department of Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Singularities of spectra of infrared reflection of tertiary compounds of the type T1BX2
Hasanlı, Nızamı; Khomutova, M.D.; Sardarly, R.M.; Tagorov, V.I. (Springer Science and Business Media LLC, 1977-07-01)
The frequencies of lattice vibrations are calculated for compounds of the type T1BX2 on the basis of the linear-chain model. The calculated frequencies are compared with experimental values for TlGaS2 and TlGaSe2. The good agreement between the calculated and experimental frequencies serves as proof of the applicability of the linear-chain model to compounds of the T1BX2 type. The proposed method of calculation of frequencies makes it possible to predict the theoretical frequencies of lattice vibrations of ...
Nonlinear mode coupling and sheared flow in a rotating plasma
Uzun Kaymak, İlker Ümit; Choi, S.; Clary, M. R.; Ellis, R. F.; Hassam, A. B.; Teodorescu, C. (IOP Publishing, 2009-01-01)
Shear flow is expected to stabilize the broad spectrum of interchange modes in rotating plasmas. However, residual fluctuations may still persist. To investigate the presence of such fluctuations, sixteen magnetic pickup coils equally spaced on a crown have been mounted inside the vacuum vessel, at the edge of a rotating plasma in mirror configuration. A comprehensive analysis of the magnetic fluctuations shows that very low spatial mode numbers survive under the imposed shear flow. Nevertheless, temporal F...
MHD flow in a circular pipe with arbitrarily conducting slipping walls
Senel, P.; Tezer, Münevver (2018-08-31)
In this study, the magnetohydrodynamic (MHD) flow is simulated in a circular pipe with slipping and arbitrarily conducting boundary. The 2D governing coupled equations in terms of the velocity and the induced magnetic field are solved by the Dual Reciprocity Boundary Element Method (DRBEM). The discretized system of equations is solved in one stroke without introducing an iteration which reduces the computational cost. It is shown that, the flow decelerates, Hartmann layers enlarge through the top and the b...
Trapping center parameters in TlInS2 layered crystals by thermally stimulated current measurements
Yuksek, NS; Hasanlı, Nızamı; Ozkan, H; Karci, O (Institute of Physics, Polish Academy of Sciences, 2004-07-01)
Thermally stimulated current measurements are carried out on TlInS2 layered single crystal with the current flowing perpendicular to the c-axis in the temperature range of 10 to 90 K. The results are analyzed according to various methods, such as curve fitting, heating rate, and initial rise methods, which seem to be in good agreement with each other. Experimental evidence is found for one trapping center in TlInS2 crystal in the low-temperature region.
Approximate analytical solutions of the pseudospin symmetric Dirac equation for exponential-type potentials
Arda, Altu; Sever, Ramazan; TEZCAN, CEVDET (Wiley, 2009-10-01)
The solvability of The Dirac equation is studied for the exponential-type potentials with the pseudospin symmetry by using the parametric generalization of the Nikiforov-Uvarov method. The energy eigenvalue equation, and the corresponding Dirac spinors for Morse, Hulthen, and q-deformed Rosen-Morse potentials are obtained within the framework of an approximation to the spin-orbit coupling term, so the solutions are given for any value of the spin-orbit quantum number kappa = 0, or kappa not equal 0. (C) 200...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Tezer, “Parameter Identification in MHD Duct Flow Cauchy Problem using the DRBEM,” 2018, vol. 1141, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35754.