Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Analysis for the Broad-Band Absorption Enhancement Using Plasmonic Structures on Uncooled Infrared Detector Pixels
Download
index.pdf
Date
2012-04-27
Author
Lulec, Sevil Z.
Küçük, Serhat
Battal, Enes
Okyay, Ali K.
Tanrikulu, M. Yusuf
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
214
views
0
downloads
Cite This
This paper introduces an analysis on the absorption enhancement in uncooled infrared pixels using resonant plasmon modes in metal structures, and it reports, for the first time in literature, broad-band absorption enhancement using integrated plasmonic structures in microbolometers for unpolarized long-wave IR detection. Different plasmonic structures are designed and simulated on a stack of layers, namely gold, polyimide, and silicon nitride in order to enhance absorption at the long-wave infrared. The simulated structures are fabricated, and the reflectance measurements are conducted using an FTIR Ellipsometer in the 8-12 m wavelength range. Finite difference time domain (FDTD) simulations are compared to experimental measurement results. Computational and experimental results show similar spectral reflection trends, verifying broad-band absorption enhancement in the spectral range of interest. Moreover, this paper computationally investigates pixel-wise absorption enhancement by plasmonic structures integrated with microbolometer pixels using the FDTD method. Special attention is given during the design to be able to implement the integrated plasmonic structures with the microbolometers without a need to modify the pre-determined microbolometer process flow. The optimized structure with plasmonic layer absorbs 84 % of the unpolarized radiation in the 8-12 m spectral range on the average, which is a 22 % increase compared to a reference structure with no plasmonic design. Further improvement may be possible by designing multiply coupled resonant structures.
Subject Keywords
Infra-red imaging
,
Microbolometer
,
Surface plasmon polaritons
,
Absorption enhancement.
URI
https://hdl.handle.net/11511/35770
DOI
https://doi.org/10.1117/12.964549
Collections
Department of Petroleum and Natural Gas Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells
Borra, Mona Zolfaghari; Gullu, Seda Kayra; Es, Fırat; Demircioğlu, Olgu; Günöven, Mete; Turan, Raşit; Bek, Alpan (Elsevier BV, 2014-11-01)
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shi...
An Information theoretic representation of brain connectivity for cognitive state classification using functional magnetic resonance imaging
Önal, Itır; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2013)
In this study, a new method for analyzing and representing the discriminative information, distributed in functional Magnetic Resonance Imaging (fMRI) data, is proposed. For this purpose, a local mesh with varying size is formed around each voxel, called the seed voxel. The relationships among each seed voxel and its neighbors are estimated using a linear regression equation by minimizing the expectation of the squared error. This squared error coming from linear regression is used to calculate various info...
A Detailed Analysis for the Absorption Coefficient of Multilevel Uncooled Infrared Detectors
Küçük, Serhat; Akın, Tayfun (2011-04-29)
This paper introduces a detailed analysis on the calculation of the absorption coefficient of multilevel uncooled infrared detectors. The analysis is carried out considering a two-level 25 mu m pixel pitch infrared detector with a sandwich type resistor which is divided into sub-regions consisting of different stacks of layers. The absorption coefficients of these different sub-regions are calculated individually by using the cascaded transmission line model, including the main body, arms, and the regions w...
The use of gold and silver nanoparticles for surface enhanced fluorescence (SEF) of Dyes
Öztürk, Tacettin; Volkan, Mürvet; Department of Chemistry (2010)
This study focuses on preparing surface enhanced fluorescence (SEF) substrates for use in the enhancement of the emission signal of rhodamine B and fluorescein dyes. Fluorescence spectroscopy has been widely utilized owing to its high sensitivity. SEF is a process where the interactions of fluorophores with the localized surface plasmons of metal nanoparticles results in fluorescence enhancement, increased photostability and rates of system radiative decay which leads to a decreased lifetime. One of the mos...
A Parametric Estimation Approach to Instantaneous Spectral Imaging
Öktem, Sevinç Figen; Davila, Joseph M (2014-12-01)
Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging techn...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Z. Lulec, S. Küçük, E. Battal, A. K. Okyay, M. Y. Tanrikulu, and T. Akın, “An Analysis for the Broad-Band Absorption Enhancement Using Plasmonic Structures on Uncooled Infrared Detector Pixels,” 2012, vol. 8353, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35770.