Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers

2011-03-01
Ubeyli, Mustafa
Deniz, Huseyin
DEMİR, TEYFİK
Ögel, Bilgehan
Gurel, Bayram
KELEŞ, Ömer
Utilization of a ceramic front layer provides an improvement in the ballistic efficiency of monolithic metallic materials. In the current paper, the ballistic behavior of laminated composite having alumina front and dual phase steel backing layers was studied using 7.62 mm armor piercing (AP) projectiles under normal impact. The variables used were martensite content of the backing layer and the areal density of the composite. Experimental results showed that utilization of a 6 mm thick alumina front layer which was bonded to dual phase steel enhanced the ballistic resistance of the dual phase steel remarkably.
MATERIALS & DESIGN

Suggestions

Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics
Hekmat, Farzaneh; Tutel, Yusuf; Ünalan, Hüsnü Emrah (2020-07-01)
Symmetric supercapacitors (SSCs) with remarkable energy storing capability, high specific power as well as long-term cyclic stability were fabricated from nickel tungstate (NiWO4) @ nickel oxide (NiOx) decorated commercial cotton fabrics (CCFs). A commercial cotton-based textile was first made conductive by the state of the art ultrasonic spray coating method. This was followed by chemical and electrochemical processes to decorate activated CCFs with NiO(x)and NiWO4, respectively. The assembled SSCs had the...
Polystyrene / boron nitride nanotube composites: synthesis, processing and characterization
Balık, Erdem; Bayram, Göknur; Sezgi, Naime Aslı; Department of Chemical Engineering (2015)
In recent years, boron nitride nanotubes (BNNTs) have been added to polystyrene (PS) which is a widely used thermoplastic polymer in order to improve its thermal and mechanical properties. Solution mixing and melt blending techniques are commonly used methods to prepare polymer-boron nitride nanotube (BNNT) composites. However, these two composite preparation methods have a common problem about the dispersion of fillers in the polymer matrix. In this study, PS-BNNT composites were prepared using masterbatch...
Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel
Yurtışık, Koray; Tirkeş, Süha (2014-01-01)
Contrary to other keyhole welding applications on duplex stainless steels, a proper cooling time and a dilution were achieved during hybrid plasma gas metal arc welding that provided sufficient reconstructive transformation of austenite without sacrificing its high efficiency and productivity. Simultaneous utilization of keyhole and metal deposition in the hybrid welding procedure enabled us to get an as-welded 11 mm-thick standard duplex stainless steel plate in a single pass. Me examination on hybrid plas...
Multilayer graphene growth on polar dielectric substrates using chemical vapour deposition
KARAMAT, SHUMAİLA; Celik, K.; Zaman, S. Shah; Oral, Ahmet (Elsevier BV, 2018-06-01)
High quality of graphene is necessary for its applications at industrial scale production. The most convenient way is its direct growth on dielectrics which avoid the transfer route of graphene from metal to dielectric substrate usually followed by graphene community. The choice of a suitable dielectric for the gate material which can replace silicon dioxide (SiO2) is in high demand. Various properties like permittivity, thermodynamic stability, film morphology, interface quality, bandgap and band alignment...
Assessment of the Effect of Hybrid GFRP CFRP Usage in Wind Turbine Blades on the Reduction of Fatigue Damage Equivalent Loads in the Wind Turbine System
Gözcü, Ozan; Farsadi, Touraj; Şener, Özgün; Kayran, Altan (null; 2015-01-05)
The use of hybrid GFRP-CFRP material in wind turbine blades is investigated for its effectiveness in reducing fatigue damage equivalent loads in the whole wind turbine system, and comparisons are made against the baseline full GFRP blade in terms of strength, deformation, dynamic characteristics, weight and cost of the blade. To achieve load alleviation in the whole wind turbine system, bending-twisting coupling in composite blades is exploited through the use of off-axis plies in the spar caps of the blade...
Citation Formats
M. Ubeyli, H. Deniz, T. DEMİR, B. Ögel, B. Gurel, and Ö. KELEŞ, “Ballistic impact performance of an armor material consisting of alumina and dual phase steel layers,” MATERIALS & DESIGN, pp. 1565–1570, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35810.