Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dependence of plasmonic enhancement of photocurrent in a-Si:H on the position and thickness of SiNx spacer layers
Date
2015-04-29
Author
Saleh, Zaki M.
Nasser, Hisham
Ozkol, Engin
Bek, Alpan
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
155
views
0
downloads
Cite This
Plasmonic interfaces integrated to the front, back and both surfaces of photovoltaic thin films show different degrees of enhancement of light trapping. Enhancements in the spectral dependence of photocurrent normalized to the power of excitation light are used as an indicator of enhanced light trapping. In a previous study, we obtained enhancement in the spectral range of 600-700 nm by integrating 100-nm Ag nanoparticles to the back surface of a-Si:H with a critical dependence on the SiNx spacer layer thickness. In this study, we compare the enhancement in photocurrent due to plasmonic interfaces integrated to the front, back and both front and back surfaces of the a-Si:H absorber. Interfaces integrated to the back result in the largest enhancement in photocurrent while those integrated to the front give the lowest. The marginal enhancements due to two interfaces appear to be mainly due to the back interface. While plasmonics effects may not account for the total enhancement in photocurrent, it explains the relative enhancement in the spectral range of 550-700 rather well. For all configurations, the enhancement in the spectral dependence of photocurrent is accompanied by broadening into the red of the localized surface plasmon resonance (LSPR). (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Subject Keywords
Spacer layer
,
Light trapping
,
Plasmonics
,
Photocurrent
URI
https://hdl.handle.net/11511/35878
DOI
https://doi.org/10.1002/pssc.201510109
Collections
Department of Physics, Conference / Seminar
Suggestions
OpenMETU
Core
Enhanced Optical Absorption and Spectral Photocurrent in a-Si:H by Single- and Double-Layer Silver Plasmonic Interfaces
Saleh, Zaki M.; NASSER, Hisham; ÖZKOL, Engin; GÜNÖVEN, Mete; ALTUNTAS, Burcu; Bek, Alpan; Turan, Raşit (2014-04-01)
Single and double plasmonic interfaces consisting of silver nanoparticles embedded in media with different dielectric constants including SiO2, SiNx, and Al:ZnO have been fabricated by a self-assembled dewetting technique and integrated to amorphous silicon films. Single plasmonic interfaces exhibit plasmonic resonances whose frequency is red-shifted with increasing particle size and with the thickness of a dielectric spacer layer. Double plasmonic interfaces consisting of two different particle sizes exhib...
High haze nature of textured Al:ZnO with Ag nanoparticles for light management in thin film solar cells
Nasser, Hisham; Ozkol, Engin; Bek, Alpan; Turan, Raşit (2015-05-01)
We report on fabrication of plasmonic interfaces consisting of Ag nanoparticles on flat and textured Al:ZnO for use at the front surface of thin film solar cells to enhance light trapping and photo-conversion efficiencies. We show that outstandingly high transmittance haze is achieved from single step HCl surface textured Al:ZnO and demonstrate Ag dewetting on textured and flat Al:ZnO surfaces upon annealing at moderate temperatures. Optical response of these plasmonic interfaces clearly display plasmonic r...
Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H
Saleh, Z. M.; NASSER, H; ÖZKOL, E; GÜNÖVEN, M; Abak, Musa Kurtuluş; Canlı, Sedat; Bek, Alpan; Turan, Raşit (2015-10-24)
Plasmonic interfaces consisting of silver nanoparticles of different sizes (50-100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size an...
Effect of crystallization on the electronic and optical properties of archetypical porphyrins
Malcıoğlu, Osman Barış; Bockstedte, Michel (Royal Society of Chemistry (RSC), 2020-02-21)
Thin porphyrin films as employed in modern optical devices or photovoltaic applications show deviating electronic and optical properties from the gasphase species. Any understanding of the physical origin may pave way to a specific engineering of these properties via ligand or substituent control. Here we investigate the impact of crystallization of prototypical porphyrins on the electronic levels and optical properties in the framework of density functional theory and many-body perturbation theory. Crystal...
Design and Optimization of Nanoantennas for Nano-Optical Applications
Işıklar, Göktuğ; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2020-9)
In this study, design and simulation of plasmonic nanoantenna structures to obtain high power enhancement capabilities at optical frequencies, as well as utilization of nanoantennas for imaging and sensing applications are presented. Plasmonic characteristics of nanoantennas, which depend on many parameters, such as material, frequency, geometry, and size, are investigated in detail via computational analyses of various nanoantenna structures. Numerical solutions of electromagnetic problems are performe...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. M. Saleh, H. Nasser, E. Ozkol, A. Bek, and R. Turan, “Dependence of plasmonic enhancement of photocurrent in a-Si:H on the position and thickness of SiNx spacer layers,” 2015, vol. 12, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35878.