Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H
Date
2015-10-24
Author
Saleh, Z. M.
NASSER, H
ÖZKOL, E
GÜNÖVEN, M
Abak, Musa Kurtuluş
Canlı, Sedat
Bek, Alpan
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
238
views
0
downloads
Cite This
Plasmonic interfaces consisting of silver nanoparticles of different sizes (50-100 nm) have been processed by the self-assembled dewetting technique and integrated to hydrogenated amorphous silicon (a-Si:H) using SiNx spacer layers to investigate the dependence of optical trapping enhancement on spacer layer thickness through the enhancements in photocurrent. Samples illuminated from the a-Si:H side exhibit a localized surface plasmon resonance (LSPR) that is red-shifted with the increasing particle size and broadened into the red with the increasing spacer layer thickness. The photocurrent measured in a-Si:H is not only consistent with the red-shift and broadening of the LSPR, but exhibits critical dependence on the spacer layer thickness also. The samples with plasmonic interfaces and a SiNx spacer layer exhibit appreciable enhancement of photocurrent compared with flat a-Si:H reference depending on the size of the Ag nanoparticle. Simulations conducted on one-dimensional square structures exhibit electric fields that are localized near the plasmonic structures but extend appreciably into the higher refractive index a-Si:H. These simulations produce a clear red-shift and broadening of extinction spectra for all spacer layer thicknesses and predict an enhancement in photocurrent in agreement with experimental results. The spectral dependence of photocurrent for six plasmonic interfaces with different Ag nanoparticle sizes and spacer layer thicknesses are correlated with the optical spectra and compared with the simulations to predict an optimal spacer layer thickness.
Subject Keywords
Silver nanoparticles
,
Dewetting
,
Plasmonic resonance
,
Light trapping
,
Photocurrent
,
Solar cells applications
URI
https://hdl.handle.net/11511/48500
Journal
JOURNAL OF NANOPARTICLE RESEARCH
DOI
https://doi.org/10.1007/s11051-015-3225-9
Collections
Test and Measurement Center In advanced Technologies (MERKEZ LABORATUVARI), Article
Suggestions
OpenMETU
Core
Enhanced Optical Absorption and Spectral Photocurrent in a-Si:H by Single- and Double-Layer Silver Plasmonic Interfaces
Saleh, Zaki M.; NASSER, Hisham; ÖZKOL, Engin; GÜNÖVEN, Mete; ALTUNTAS, Burcu; Bek, Alpan; Turan, Raşit (2014-04-01)
Single and double plasmonic interfaces consisting of silver nanoparticles embedded in media with different dielectric constants including SiO2, SiNx, and Al:ZnO have been fabricated by a self-assembled dewetting technique and integrated to amorphous silicon films. Single plasmonic interfaces exhibit plasmonic resonances whose frequency is red-shifted with increasing particle size and with the thickness of a dielectric spacer layer. Double plasmonic interfaces consisting of two different particle sizes exhib...
Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications
MAVROKEFALOS, Anastassios; HAN, Sang Eon; Yerci, Selçuk; Branham, Matthew S.; CHEN, Gang (2012-06-01)
Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid light-trapping scheme for c-Si thin films, fabricated at wafer scale via a low-cost wet etching process, significantly enhances absorption within the c-Si layer. A broadband enhancement in absorptance that approaches the Yablo-novitch limit (Yablo-novitch, E. J. Opt. Soc. Am. 1987, 72, ...
Analysis of reconstruction performance of magnetic resonance conductivity tensor imaging (MRCTI) using simulated measurements
DEĞİRMENCİ, EVREN; Eyüboğlu, Behçet Murat (2017-01-01)
Magnetic resonance conductivity tensor imaging (MRCTI) was proposed recently to produce electrical conductivity images of anisotropic tissues. Similar to magnetic resonance electrical impedance tomography (MREIT), MRCTI uses magnetic field and boundary potential measurements obtained utilizing magnetic resonance imaging techniques. MRCTI reconstructs tensor images of anisotropic conductivity whereas MREIT reconstructs isotropic conductivity images. In this study, spatial resolution and linearity of five rec...
Magnetic Resonance - Electrical Impedance Tomography (MR-EIT) Research at METU
Eyüboğlu, Behçet Murat (2006-09-01)
Following development of magnetic resonance current density imaging (MRCDI), magnetic resonance - electrical impedance tomography (MR-EIT) has emerged as a promising approach to produce high resolution conductivity images. Electric current applied to a conductor results in a potential field and a magnetic flux density distribution. Using a magnetic resonance imaging (MRI) system, the magnetic flux density distribution can be reconstructed as in MRCDI. The flux density is related to the current density distr...
Highly Sensitive and Tunable Fano-like Rod-Type Silicon Photonic Crystal Refractive Index Sensor
Kılıç, Selahattin Cem; Kocaman, Serdar (2021-01-01)
IEEEA highly sensitive and tunable 2D rod-type silicon photonic crystal cavity based biosensor configuration has been designed and numerically analyzed. The structure is optimized so that the light-matter interaction is maximized in the cavity region. Out-of-plane light confinement is achieved by sandwiching the rods between metal plates, and tuning is achieved by introducing an air-gap between on top of the rods and the metal plate. A single rod is positioned in the middle of the waveguide so that the cavi...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. M. Saleh et al., “Optimized spacer layer thickness for plasmonic-induced enhancement of photocurrent in a-Si:H,”
JOURNAL OF NANOPARTICLE RESEARCH
, pp. 0–0, 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48500.