Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Assessment of flow and heat transfer characteristics for proposed solid density distributions in dilute laminar slurry upflows through a concentric annulus
Date
2003-09-01
Author
Eraslan, Ahmet Nedim
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
231
views
0
downloads
Cite This
A computational model is developed to predict the hydrodynamic and heat transfer characteristics of dilute liquid-solid laminar upflows through a concentric annulus. The dilute slurry is treated as a single phase Newtonian fluid of locally variable physical and thermal properties. Available experimental data of radial solid density distributions in dilute water-feldspar annular upflows is used in the model. Various important characteristics of laminar slurry flows were successfully predicted. It was also shown mathematically that in the limiting case of zero average solid loading, the solution reduces to that of the single phase. The radial location of maximum slurry density in the annular gap was found to be an important factor in determining both the flow and heat transfer behavior of the present system; also, the higher heat transfer enhancement ratios were predicted at the lower slurry Reynolds numbers.
Subject Keywords
Industrial and Manufacturing Engineering
,
Applied Mathematics
,
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/35912
Journal
CHEMICAL ENGINEERING SCIENCE
DOI
https://doi.org/10.1016/s0009-2509(03)00284-7
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
EVALUATION OF SECOND VIRIAL COEFFICIENTS FROM SATURATION DATA
Orbey, H.; Orbey, N. (Informa UK Limited, 1989-3)
A data reduction technique is introduced for the evaluation of second virial coefficients of gases at subcritical temperatures. The method makes use of the vapor-liquid equilibrium data, i.e., temperature, saturation pressure, liquid and vapor molar volumes and can be used to obtain second virial coefficients of a wide variety of fluids including polar, associating and quantum gases. The calculated second virial coefficients are in good agreement with their counterparts from literature, which are obtained f...
Analysis of the electrofiltration mechanism based on multiphase filtration theory
Genc, A; Tosun, I (Informa UK Limited, 2004-01-01)
A mathematical model based on multiphase filtration theory is developed to describe the electrofiltration process. The model takes both electrophoretic and electroosmotic effects into account. The electrophoretic migration velocity of solid particles is predicted from the model using the filtrate volume time data obtained from electrofiltration experiments.
An experimental study of residual fiber strains in Ti-15-3 continuous fiber composites
Pickard, S.M.; Miracle, D.B.; Majumdar, B.S.; Kendig, K.L.; Rothenflue, L.; Çöker, Demirkan (Elsevier BV, 1995-01-01)
A simplified experimental technique to determine the axial fiber residual strain in continuously-reinforced metal matrix composites is described. The residual fiber strains in two Ti-15V-3Cr-3Al-3Sn/SiC metal matrix composites have been measured with this technique. Residual fiber strains on the order of 0.2% are measured in the as-processed condition, and the residual stresses approach zero after testing the composite in tension to failure at room temperature. A conceptual description of the effect of tens...
Detecting stability of conical spouted beds based on information entropy theory
Savari, Chiya; Sotudeh-Gharebagh, Rahmat; Külah, Görkem; KÖKSAL, MURAT; Mostoufi, Navid (Elsevier BV, 2019-02-01)
Effects of particle size, particle density, gas inlet diameter and static bed height on the stability of operation in conical spouted beds were investigated through analyses of information entropy of pressure fluctuations. In this respect, the maximum information entropy of pressure fluctuations was used as a stability criterion. The results showed that stability of the bed increases with an increase in the maximum entropy. The maximum information entropy of pressure fluctuations increases with increasing p...
DETERMINATION OF MOISTURE DIFFUSIVITY AND BEHAVIOR OF TOMATO CONCENTRATE DROPLETS DURING DRYING IN AIR
KARATAS, S; ESIN, A (Informa UK Limited, 1994-01-01)
The drying mechanism and diffusion coefficient of water in spherical droplets (1.73 - 2.08 mm diameter) of tomato concentrates were successfully interpreted and modelled by using Fick's law. Solids content of the initial concentrate (5-15% w/w), and drying temperature (60-degrees - 100-degrees-C) were varied but the drying air was kept at constant velocity and humidity.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. N. Eraslan, “Assessment of flow and heat transfer characteristics for proposed solid density distributions in dilute laminar slurry upflows through a concentric annulus,”
CHEMICAL ENGINEERING SCIENCE
, pp. 4055–4069, 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35912.